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We first introduce the Wigner±Weyl±Moyal formalism for a theory whose phase
space is an arbitrary Lie algebra. We also generalize to quantum Lie algebras
and to supersymmetri c theories. It turns out that the noncommutativ ity leads to
a deformation of the classical phase space: instead of being a vector space, it
becomes a manifold, the topology of which is given by the commutator relations.
It is shown in fact that the classical phase space, for a semisimple Lie algebra,
becomes a homogeneous symplectic manifold. The symplectic product is also
deformed. We finally make some comments on how to generalise to C*-algebras
and other operator algebras, too.

1. INTRODUCTION

The very powerful Wigner±Weyl±Moyal (WWM) formalism (Grossman,
1976; Royer, 1977; Dahl, 1982; Amiet and Ciblis 1991; Niehto, 1991; VaÂrilly

and Gracia-BondõÂa, 1989; Li, 1994a,b) is a way to associate with each operator

describing a state, observable, or transition a function on phase space. This

function is known as the Weyl symbol, or the Weyl transform of the corres-

ponding operator. In this way the wave function (or rather the density matrix)
is associated with a pseudo-distribution function known as the Wigner func-

tion. This function, denote it by F, is the closest analogue of the classical phase-

space distribution, which enters, for instance, in the Boltzmann equation. It

can, however, be nonpositive, and is hence not a proper distribution func-

tionÐ in most cases the Heisenberg uncertainty relation forbids the existence

of such a proper distribution function. As first pointed out by Moyal, the
Weyl transform generates a deformation, on the phase space, of the classical

Poisson brackets and of the usual commutative product
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( f (q, p), g(q, p)) ® f (q, p)g(q, p) 5 ( fg)(q, p)

The deformed product is denoted by * and is called the twisted product. It

is in general noncommutative. The deformation of the Poisson bracket is

what is known as the Moyal bracket,

[ f (q, p), g(q, p)] M 5 f (q, p) * g(q, p) 2 g(q, p) * f (q, p)

5 i " { f (q, p), g(q, p)}PB 1 O( " 2)

It is this method we want to extend to a phase space which is not just that
of quantum mechanics, but can be an arbitrary (finite or infinite dimensional)

Lie algebra or, as will be shown later, super-Lie algebra, a quantum-Lie

algebra, or a C*-algebra.2

We will first review the standard WWM approach to the quantum

mechanical phase space, i.e., to the Lie algebra hn of the Heisenberg group

in n dimensions. This will be done in terms of certain translation operators.
This formalism will then be carried over into a second-quantized formulation

by introducing a new basis, namely that of creation and annihilation operators.

This will at once show us how to extend the formalism in two directions:

(1) to an arbitrary Lie algebra, and (2) to fermionic degrees of freedom.

These can then be combined to give a WWM formalism for super-Lie algebras.

The way we derive the standard WWM approach will show some connection
with quantum groups, and hence we will also be commenting on how to

extend this formalism even further, into the realm of quantum deformed

Lie algebrasÐ quantum-Lie algebras. Finally we will study general operator

algebras, and we will show that our method can be generalized to C*-algebras.

We finish with some comments on further generalizations and applications.

2. THE WWM APPROACH TO THE STANDARD PHASE SPACE

The standard phase space of quantum mechanics is given by 2n genera-

tors qÃi , pÃi satisfying (we only treat bosons for now; we will, however, return

to fermions later)

2 Some abuse of notation is used here. When we say that a quantum mechanical phase space
is given by (or simply is) some Lie algebra, what we mean is that any quantum physical
observable is some function of the generators of this algebra, hence the quantum phase space
is really the universal enveloping algebra U of the Lie algebra in question. It is, however,
straightforward to go from the Lie algebra to its universal enveloping algebraÐ the algebra
of formal power series with elements from the Lie algebra. Furthermore, one could just as
well consider the skew field P of fractions of U, P 5 {u 2 1v | u, v P U }. This would correspond
to an algebra of formal Laurent series (i.e., functions possibly with singularities), and the
corresponding classical phase space would then consists of meromorphic functions.
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[qÃi , pÃj ] 5 i d ij with i, j 5 1, . . . , n (1)

in units where " 5 1.

We know that these commutation relations can only be represented

faithfully in terms of operators on some Hilbert space, leading to the standard

formulation of quantum theory. We are interested in a phase-space formulation

which as closely as possible resembles that of classical statistical mechanics,
and we thus need a correspondence between observables represented by

operators on the Hilbert space H 5 L2(X ) (X is the coordinate space, q-

space, i.e., an n-dimensional vector space) and functions on a 2n-dimensional

symplectic space, phase space, i.e., we want a map, the Weyl map, AÃ j

A W (q, p), where AÃis an operator on H and A W is some function on the

classical phase space. Quantization as a general formalism related to the

introduction of such symbols for operators was, I believe, first extensively
studied by Berezin (Berezin, 1975; Unterberger and Upmai, 1994). Following

Grossmann (1976), Royer (1977), and Dahl (1982), we introduce operators

P (u, v) 5 exp(i(u ? pÃ2 v ? qÃ)) (2)

These satisfy

P (u, v) P (u8, v8) 5 P (u 1 u8, v 1 v8)Q(u, v; u8, v8) (3)

where

Q(u, v; u8, v8) 5 ei(uv8 2 vu8)/2 (4)

is a C-number function. This shows then that P (u, v) constitutes a ray

representation of the Euclidean group R2n, the group of translations in the

Euclidean plane.3 The symplectic form uv8 2 vu8 appears in this formula for

Q, and in fact this is the only way in which it appears. The symplectic form
is dictated by (or contained in) the algebraic relations defining the Heisenberg

algebra. We will see that for more general Lie algebras, the defining relations

(more precisely, the Cartan decomposition) dictates a symplectic structure.

One easily proves

P (u, v) pÃP (u, v) 2 1 5 pÃ2 v (5)

P (u, v)qÃP (u, v) 2 1 5 qÃ2 u (6)

which gives us a physical picture of what these operators do: they are transla-

3 I use the following notation for the most important sets of numbers: N is the natural numbers,
N 5 {1, 2, . . .}, Z denotes the integers, Q the rationals, R the reals, C the complex numbers,
and H the quaternions. A general field (or even division ring) will be denoted by F, while T
denotes the torus, T 5 {z P C | | z | 5 1} . S 1. Commutators and anticommutator s will be
denoted by [ ? , ? ], and { ? , ? }, while Moyal and Poisson brackets will be characterized by
subscripts M and PB, respectively.
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tions in phase space. It also shows us that u acts like a C-number version of

the Q-number qÃand v as a C-number version of the Q-number pÃ; this shows

that {(u, v)} can be identified with the classical phase space. There are no
restrictions imposed upon u, v; hence the classical phase space becomes

simply R2n.

We can use the operator P (u, v) to construct our map AÃj A W (u, v)

as follows. To each operator describing an observable we associate a function

given by

A W (u, v) 5 Tr( P (u, v)AÃ) (7)

This can be inverted to give

AÃ5 # A W (u, v) P (u, v) du dv (8)

Actually, this map is only an isomorphism when AÃlies in the space @2(H )

of Hilbert±Schmidt operators. And we thus have an isomorphism between
the space of Hilbert±Schmidt operators on L2(Rn) and the function space

L2(Rn 3 Rn). The function corresponding to the density matrix r is known

as the Wigner function (strictly speaking, this is only the symplectic Fourier

transform of the proper Wigner function). For a pure state c we have r 5
| c & ^ c | and hence

F(u, v) 5 Tr( P (u, v) | c & ^ c | ) 5 ^ c | P (u, v) | c & (9)

which gives a geometric interpretation of the Wigner function: it is the
expectation value of a reflection operator (the symplectic Fourier transform

of the translation operator P is a reflection operator). This Wigner function

is the closest quantum cousin of the classical distribution function f (q, p);

it is, however, in general nonpositive.

The Weyl map AÃj A W generates an algebra structure on L2(Rn 3 Rn) via

(AÃBÃ) W [ A W * BW (10)

This product is known as the twisted product; it is noncommutative, but
associative; hence with this product L2(Rn 3 Rn) becomes a non-Abelian

Banach algebra (a Hilbert algebra even). One can show4

f * g 5 f (u, v) exp 1 2 1

2
i "

-
- v

?
-
- u 2 g(u, v) (11)

where - / - v is understood always to act on f (u, v) and the other derivative

always to act on g. We have reinserted " for clarity.

4 A few papers in the mathematics literature deal with twisted products for some classical
groups; see, e.g., Moreno (1986).
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As the twisted product is noncommutative, we can introduce a kind of

commutator, known as the Moyal bracket

[ f (u, v), g(u, v)] M [ f * g 2 g * f (12)

One easily sees that

([AÃ, BÃ]) W 5 [A W , B W ] M (13)

Furthermore ,

[ f, g] M 5 2if sin(1±2 " D )g (14)

where we have introduced the bi-differential operator

f D g [
- f

- v
?

- g

- u
2 (u % v) 5 { f, g}PB (15)

which is the bi-differential operator defining the classical Poisson brackets,
{ ? , ? }PB. Hence

([AÃ, BÃ]) W 5 [A W , BW]M 5 i " {A W, BW}PB 1 O( " 2) (16)

Thus the Moyal bracket is a deformation of the classical Poisson bracket.

Such deformations of classical Poisson structures have also been studied in

their own right in the mathematics literature (Etingof and Kazhdan, 1995a,b).

Also note that this relation clarifies the usual Heisenberg quantization rule

{ ? , ? }PB ®
1

i "
[ ? , ? ]

One should note that the Wigner function considered as a mapping @2 ®
L2(R2n) is not unique; one can modify the definition by the inclusion of an

arbitrary function (Cohen, 1966; Springborg, 1983; Dahl, 1992; DavidovicÂ

et al., 1995). Each such function corresponds to a different prescription for
the ordering of operator products. The Wigner function is, however, the

simplest of these functions, and the only one for which we do not need a

ª dualº for going the other way L2(R2n) ® @2. I refer to Cohen (1966) and

Dahl (1991) for further details. Furthermore , one could just as wel use a

translation operator based on all the generators of the Lie algebra, i.e., using

P alt(u, v, w) [ exp(iupÃ2 ivqÃ1 iw1Ã)

and the classical ª phase spaceº is now apparently (2n 1 1)-dimensional
(parametrized by u, v, w), but one should note that 1Ãlies in the center of the

algebra (the Heisenberg algebra is a central extension of the algebra of

translations R2n), hence including it simply amounts to multiplying the func-

tions by a phase:
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P alt(u, v, w) 5 eiw P (u, v)

and can thus be ignored. These comments will turn out to be useful when
the generalization to arbitrary Lie algebras is attempted.

Fascinating as all this is, we nonetheless have to move on. We want to

generalize the above-outlined beautiful formalism to the case where the phase

space is not just the Heisenberg algebra hn , but any Lie algebra g.

2.1. Creation and Annihilation Operators

We need one more step before we can safely generalize to arbitrary Lie

algebras. All physical processes can be described in terms of creation and

annihilation operators. For a simple (bosonic) quantum mechanical system
we know that these are given in terms of the operators qÃ, pÃby

aÃ5
1

! 2
( pÃ1 iqÃ) (17)

aÃ² 5
1

! 2
( pÃ2 iqÃ) (18)

i.e., by a simple rotation of the quantum phase space. We know that these

operators satisfy

[aÃ, aÃ² ] 5 1 (19)

[nÃ, aÃ] 5 2 aÃ (20)

[nÃ, aÃ² ] 5 aÃ² (21)

where nÃ5 aÃ² aÃis the number operator.

We introduce a new family of operators

P Ä ( a , b ) [ exp( 2 i( a ? aÃ² 2 b ? aÃ)) (22)

Then

P Ä ( a , b ) P Ä ( a 8, b 8) 5 P Ä ( a 1 a 8, b 1 b 8)QÄ ( a , b ; a 8, b 8) (23)

where

QÄ ( a , b ; a 8, b 8) 5 exp(1±2 ( a b 8 2 b a 8)) (24)

Thus we once again have the same structure as beforeÐ not surprisingly, the
transformation (q, p) ® (a ² , a) is merely a rotationÐ but note the absence

of the imaginary unit in QÄ ; this is of course due to the absence of an i in

the fundamental commutator relations in this basis.

The importance of this example is the following:
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x Fermions can be described by a similar algebra, but with anticommu-

tators; the quantities a , b then become Grassmann numbers. (This

will be shown later.)
x We can treat fields by letting the operators carry a continuous index

(an element in some vector space or manifold) and inserting delta

functions where appropriate.

x Any Lie algebra, finite or infinite dimensional, can be written in a

form with creation and annihilation operators together with ª number

operatorsº (a root decomposition).

We should proceed with caution here. The algebra now consists of 3n
1 1 generators, namely aÃ, aÃ² , nÃ, 1, and while 1 belongs to the center, and
thus can be ignored, this is by now means the case for nÃ. Why not use

¶( a , b , g ) [ exp( 2 i a ? aÃ² 1 i b ? aÃ2 i g ? nÃ)

instead? This would clearly alter the relations:

¶( a , b , g )¶( a 8, b 8, g 8) 5 exp( 2 i( a 1 a 8) ? aÃ² 1 i( b 1 b 8) ? aÃ2 i( g 1 g 8) ? nÃ

1±2 ( a ? b 8 2 a 8 ? b ) 1 ( a ? g 8 2 a 8 ? g )aÃ²

2 ( b ? g 8 2 b 8 ? g )aÃ1 ? ? ? )

We note one thing: To any order the term involving the extra generator nÃ

looks like i( g 1 g 8) ? nÃ; there are no higher order terms. Nor does it alter the

symplectic product. The new generator only modifies the expression for the

deformed addition, i.e., the terms involving aÃ, aÃ² . The g , g 8 appear more or

less as some arbitrary parameters. The problem can be traced back to the

fact that nÃis not an independent quantity. Dependent quantities will be

elements of the universal enveloping algebras, i.e., polynomials in the genera-
tors, and should thus not be included among the basic quantitiesÐ they should

be nonlinear functions of the classical phase-space variables, and not indepen-

dent coordinates. This distinction will become clearer as we consider semisim-

ple Lie algebras in the sequel.

2.1.1. Some Comments: Quantum Planes and Fibers

We elaborate a little bit on the structure involved in the WWM formalism

as outlined above. The essential quantity was seen to be the operator P (u,
v). This then led to a deformation of the classical Poisson structure and to

an isomorphism between the Hilbert±Schmidt operators and the functions

on phase space. Now, this deformation can also come about in another

way. Define
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X 5 eqÃ, Y 5 e pÃ (25)

Then

XY 5 qYX (26)

where q 5 exp(i " ). Hence X, Y make up a noncommutative geometry, known

as the quantum plane R2
q (Wess and Zumino, 1990), which is a deformation

of the classical space R2. The automorphism group of this quantum plane is

then what is known as a quantum group, a deformed version of a classical
Lie group.

Define now

X(u) 5 euqÃ, Y(u) 5 eupÃ (27)

Then we have what we could call a quantum fiber bundle where the base

space is R and the fiber at u is a copy of the quantum plane. The deformation

parameter q develops a u dependence, so we have different deformations at

different points (the fibers are of course still isomorphic, though). We further

note the nonlocal ª foldingº

X(u)Y(v) 5 q(u, v)Y(v)X(u) (28)

which holds even when u Þ v. Let us finally note that P (u, v) is essentially

just X(v)Y(u). These arguments then indicate that quantum groups will indeed

appear upon quantization of classical theories. In fact, the entire formalism

as presented here is very intimately related to the study of quantum groups

[see, e.g., Etingof and Kazhdan (1995a,b) for a related study of deformations
of Poisson±Lie algebras].

3. AN ARBITRARY LIE ALGEBRA

We now want to generalize the WWM approach to the case where the
given quantum phase space is an arbitrary Lie algebra. Two special cases

are particularly important, namely Abelian and semisimple algebras, and will

be treated first. Then we will comment on how to generalize to non-Abelian,

nonsemisimple Lie algebras.

3.1. Abelian Lie Algebras

For each natural number n there exists just one (up to isomorphism)

Abelian Lie algebra a with dim a 5 n. And this Lie algebra is isomorphic

to Fn, where F is the base field (e.g., the reals or the complex numbers). The

universal enveloping algebra U(a) can then be identified with the ring of

formal power series in n (commuting) variables:
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U(a) 5 F[[X1, . . . , Xn]] (29)

Thus we simply take the vector space Fn to be our classical phase space G 0
a,

G 0
a [ Fn . a (30)

Note, however, that the name ª phase spaceº is somewhat inappropria te, as

G 0
a will in general not be a symplectic spaceÐ in fact it will only be so if n

is even, in which case we have the canonical symplectic form

v 0(X, X8) [ X Ù X8 [ o
n/2

i 5 1

(Xi Xi8 1 n/2 2 Xi 1 n/2 X8i ) (31)

All the same, for simplicity we will stick to the name phase space even in

the case where n 5 dim a is odd.
We should notice that G 0

a is a flat manifold (it is a vector space). It will

turn out that non-Abelian Lie algebras have nonflat phase spaces. In the

Abelian case C( G 0
a) is simply the space of all functions which have a formal

Taylor expansion. In general, this will of course not be true.

As a is Abelian, so is U(a) and hence so is C( G 0
a), i.e., the twisted

product is just the usual product of functions

f (X ) * g(X ) 5 f (X )g(X ) (32)

There is an analogy with the case of Abelian C*-algebras here: the famous

Gel’ fand theorem (Bratteli and Robinson, 1979; Murphy, 1990) states that

any Abelian C*-algebra is isomorphic to either the space C0(X ) of continuous
functions vanishing at infinity or the space Cb(X ) of bounded functions on

some locally compact Hausdorff space X. We will later come across sugges-

tions that this relationship between the WWM formalism for Lie algebras as

proposed here and the Gel’ fand theory for C*-algebras goes deeper than this.

We can collect the above in the following definition.

Definition 1. Let a be an Abelian Lie algebra with n 5 dim a , ` over

some field F; then:

1. The classical phase space becomes G 0
a [ Fn . a; when n is even

this is a symplectic space.

2. C( G 0
a) . F[[X1, . . . , Xn]] is the set of all formal power series in

n variables.

3. The twisted product on C( G 0
a) becomes trivial f * g 5 fg.

3.2. Semisimple Lie Algebras

Many models in physics use not only the Heisenberg algebra, but also

some finite- or infinite-dimensional Lie algebra g. The obvious examples are
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Yang±Mills theories, s -models, current algebras, conformal field theory, and

string theory. In a Yang±Mills theory the fields A m (and their conjugate

momenta p m ) are elements of some Lie algebra g; A m 5 A k
m l k, where [ l k,

l l] 5 ickl
m l m. The same goes for s -models; in current algebras we have

commutator relations between the various components of the currents, [J k
m (x),

J l
n (x8)] 5 i d (x 2 x8) h m n c

kl
m J m

m (x). In conformal field theory we have a family

of fields f i(z, zÅ ) depending on two complex variables and satisfying the so-

called conformal bootstrap (Fuchs, 1992)

f i(z, zÅ ) f j (w, wÅ ) 5 dij
k(z, zÅ , w, wÅ ) f k(w, wÅ )

A similar situation arises in string theory. As we can see, this is more or less
the generic situation in modern physics, and hence we need to extend our

WWM formalism to phase spaces extending the Heisenberg algebra.

For clarity we will first develop the formalism for finite-dimensional

semisimple Lie algebras, and then we will make the (rather straightforward)

generalization to their loop algebras and (affine) Kac±Moody algebras.

From basic Lie algebra theory (see, e.g., Jacobson, 1962; Fuchs, 1992)
we know that we can choose a convenient basis {E a , H i} for the semisimple

Lie algebra g such that

[H i, H j ] 5 0 (33)

[H i, E a ] 5 a iE a (34)

[E a , E b ] 5 5
N a , b E a 1 b , a 1 b a nonzero root

a i H
i a 1 b 5 0

0 otherwise

(35)

where N a , b are some constants. The elements H i, i 5 1, . . . , l, span the

Cartan subalgebra h of g and act as number operators. The remaining elements

E a act as creation and annihilation operators (depending on the sign of the
root a ). When a is a root, so is 2 a , hence we can divide the elements E a

into pairs E 6 a . We thus suggest the following generalization ( a positive):

ai j E 2 a , a ²
i j E 1 a , ni j H i (36)

As our basic translation operator P (u, v) (u, v are now r-tuples, where dim

g 5 n 5 2r 1 l, l 5 rank g 5 dim h) we will thus use the following:

Definition 2. If g is a semisimple Lie algebra of finite dimension and

g 5 g0 1 S a . 0(g a 1 g 2 a ) is a root decomposition with respect to the Cartan

subalgebra g0, then we define the Weyl map in terms of

P (u, v) 5 exp(iu a E 1 a 2 iv a E 2 a 1 i l j(u, v)Hj )

summing over positive roots.
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In general we cannot a priori omit the Cartan element (it would in

general not give rise to a bijective map), so we have to include them explicitly,

but, on the other hand, they are the analogues of the number operators and
should thus not be counted as ª independent quantities, i.e., the parameters

l i should not be independent coordinates, but instead l i 5 l i(u, v). These

dependent coordinates l i are related to an embedding of the phase space

which is (n 2 l 5 2r)-dimensional into an n-dimensional vector space.5

We cannot, however, simply take over the relation

P (u, v) P (u8, v8) 5 P (u 1 u8, v 1 v8)Q(u, v; u8, v8)

Instead it will turn out that the vector sum u 1 u8, v 1 v8 gets deformed, as

does the symplectic product j Ù j 8 5 uv8 2 vu8. Hence we can write ( j [
(u, v)) locally

P ( j ) P ( j 8) 5 P ( j % j 8)Q( j 3 j 8) (37)

Here Q depends only upon central and Cartan elements (for g semisimple,

and only upon elements in the maximal Abelian subalgebra otherwise, as

will be explained later).
The extra noncommutativity of the phase space leads to a deformation

of the vector-space structure of R2r, the deformed vector sum being % . The

explicit form for j % j 8 is found by using the Baker±Campbell±Hausdorff

formula, but for simplicity we will wait until the example g 5 su2 below

before we write it out explicitly. Note that this deformation of the vector

space structure on R2r implies that the classical phase space [(u, v) space]
might not be a vector space, but just a manifold. We will denote it by G or

G g when we wish to emphasize which algebra it belongs to. The symplectic

product Ù gets deformed to 3 . The corresponding twisted product can be

written in terms of a kernel D like

( f * g)( j ) 5 # G

D ( j , j 8, j 9) f ( j 8)g( j 9) d j 8 d j 9 (38)

where

D ( j , j 8, j 9) 5 Tr( P (u, v) P (u8, v8) P (u9, v9))

5 Tr(ei ^ j % j 8 % j 9,E & ei( j 3 ( j 8 % j 9) 1 j 8 3 j 9,H )) (39)

where we have defined

5 We should also be aware of the fact that using the matrix trace is perhaps not the most general
procedure; instead one could define an abstract trace as a linear functional x with the property
x (AB) 5 x (BA); as this implies x ([A, B]) 5 0, we see that the number of such possible
generalizations can be labeled by elements of the first cohomology class H 1(g) of the Lie
algebra g. There will in general be essentially two, namely x (AB) 5 Tr A Tr B and x (AB) 5
Tr(AB). The first of these must be discarded, as it would imply A W } Tr A for all A, which
is clearly unsatisfactory; hence only the second alternative is usable.
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^ j , E & 5 u a E 1 a 2 v a E 2 a

(x, H ) 5 xj H
j

In order to satisfy the same relations as for the Heisenberg algebra, we must

demand that Tr( P ( j ) P ( j 8)) [ K( j , j 8) is a reproducing kernel for L2( G ). This

is seen by inserting the definitions of A W, BW in

# G

A W( j )BW( j ) d j 5 Tr(AB)

which allow us to express expectation values in terms of integrals over the

classical phase space (let, for instance, B 5 r , the density matrix).

We have proven the following result:

Proposition 1. Let g be as in Definition 2 above; then:

1. dim G 5 dim g 2 dim g0 5 n.

2. Writing j 5 (u, v) (in a local coordinate patch), we have P ( j ) P ( j 8)
5 P ( j % j 8)Q( j 3 j 8) with Q only involving the Cartan elements.

3. The deformed addition is given by

1 u

v

l (u, v) 2 % 1 u8
v8

l (u8, v8) 2 5 1 u 1 u8 1 higher order terms

v 1 v8 1 higher order terms

l (u, v) 1 l (u8, v8) 2
whereas the deformed symplectic product is

j 3 j 8 5 v 0(u, v, u8, v8) 1 higher order terms

with

v 0(u, v, u8, v8) [ o
a . 0

(u a v8a 2 u8a v a )

Concerning the nature of C( G ) and products of P with itself, we can say

the following:

Proposition 2. Let P be the ª translationº operator defining the Weyl

map; then the twisted product of two functions f, g P C( G ) can be written

in term of a kernel D

( f * g)( j ) 5 # f ( j 8)g( j 9) D ( j , j 8, j 9) d j 8 d j 9

where d j is a measure invariant under the action of the corresponding Lie

group. The kernel is given by
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D ( j , j 8, j 9) 5 Tr P ( j ) P ( j 8) P ( j 9)

Furthermore , K( j , j 8) given by

K( j , j 8) 5 Tr P ( j ) P ( j 8)

is a reproducing kernel for L2( G ).

Proof. We have

f * g 5 Tr P ( P 2 1( f ) P 2 1( g))

where P 2 1( f ) denotes the inverse of the WWM map, i.e., formally,

P 2 1( f ) 5 # G

P ( j ) f ( j ) d j

The formula for D now follows. Similarly, the expression for K and the

requirement that it be a reproducing kernel follow from the condition

Tr(AB) 5 # G

A W ( j )BW( j ) d j

upon writing A 5 * P A W d j . QED

Before continuing with Kac±Moody alkgebras, let me comment on the

suggested formalism and its relations with other authors’ proposals. Several

authors have studied the natural symplectic structure associated with a Lie

algebra (see, for instance, Alekseev and Malkin, 1994); this symplectic struc-

ture is based on the coadjoint orbit action. Given a Lie group G, we construct
the symplectic space Om 5 {m8 5 Ad*( g)m | g P G}, where m is some point.

The symplectic structure is given by the Kirilov ± Kostant Poisson bracket

{ f, g}KKP(m) [ ^ m, [df (m), dh(m)] &

Here ^ ? , ? & denotes the pairing between g, the Lie algebra of G, and its dual

g*. Kasperkovitz (1993) and Kasperkovitz and Peev (1994) have applied this
symplectic structure to the WWM formalism. These proposals are relevant

when the ª coordinate manifoldº is a Lie algebra and one then needs to find

a phase space. For an arbitrary coordinate manifold M (i.e., q-space) the

associated phase space is the cotangent bundle T *M, so even if the global

momentum space ( p-space) is not defined, the phase space is well defined.
It is this construction the coadjoint orbit formalism generalizes for M replaced

by an arbitrary Lie algebra. But, a priori, systems do exist for which we can

define neither a global coordinate manifold nor a global momentum space.

Darboux’ theorem (Woodhouse, 1992) asserts, though, that we can always

define coordinates p, q locally satisfying the usual Poisson bracket relations.
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The generalization of the WWM formalism proposed here is able to handle

this situation easily, as it is based directly on the phase-space manifold and

not on the coordinate manifold. What we in this paper are essentially doing
is to reconstruct a topological space G by a ring of continuous functions

C( G ) on it (i.e., essentially ª pointless topology,º or perhaps rather ª pointless

differential geometryº ).

Before the example, which will hopefully clarify the formalism some-

what, let me just briefly mention infinite-dimensional Lie algebras. Given a

finite-dimensional Lie algebra g with generators l k, we can construct the
corresponding infinite-dimensional Lie algebra of maps S1 ® g; this algebra

is known as the loop algebra of g, and will be denoted by gloop. A basis for

this Lie algebra is l k
m 5 l kzm, where z is a complex number of modulus 1.

The commutator relations are

[ l k
m, l l

n] 5 ickl
j l h

m 1 n (40)

This is probably the simplest way of generating infinite-dimensional Lie

algebras. The more general class of Kac± Moody algebras (Kac, 1985; Fuchs,

1992) is based on a relaxation of the restraints on the Cartan matrix A ij;

interestingly this too leads to infinite-dimensional Lie algebras. An important
subclass of these algebras, the so-called affine Kac± Moody algebras (defined

by demanding the Cartan matrix to be positive semidefinite) can be viewed

as a nontrivial central extension of a loop algebra, and a basis can be chosen

such that

[H i
m, H j

n] 5 mG ij d m 1 n,0 K (41)

[H i
m, E a

n ] 5 a iE a
m 1 n (42)

[E a
m, E b

n] 5 N a b E a 1 b
m 1 n (43)

[E a
m, E 2 a

2 m] 5 a i H
i
m 1 mK (44)

where a , b are roots, N a b 5 0 if a 1 b is not a root, G ij is some matrix,
and K is the central generator. The eigenvalue of K is known as the level.
Notice that the generators with m 5 n 5 0 span a subalgebra, which is an

ordinary Lie algebra. Affine Kac±Moody algebras can be included in our

formalism by making the substitution ui j um
i , i 5 1, 2, . . . , r; m 5 0, 6 1,

6 2, . . . ; so each ui gets replaced by an entire sequence leading to an infinite-

dimensional classical phase space. In order to deal with nonaffine Kac±Moody
algebras, we will have to go back to the general commutator relations, as no

particular representation in terms of other algebras is known. If we just treat

Aij as an arbitrary matrix, we can include also these kinds of Kac±Moody

algebras in our formalism Ð in principle at least.
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4. AN EXAMPLE: su2 5 so3

To really see the formalism at work, we will consider the simplest
nontrivial example, namely g 5 su2. For simplicity we will work in the s 5
1/2 representation only (later we will show that the result is independent of

the choice of representation); the generators can then be chosen to be the

Pauli matrices s i , from which we can define

s 6 5
1

! 2
( s 1 6 i s 2)

But it will be just as easy to work directly with s i instead and we will do

this. The ª translationº operator is then

P (u, v) 5 exp(iu s 1 2 iv s 2 1 i l (u, v) s 3) (45)

which can be rewritten as (using the familiar properties of the Pauli matrices)

P (u, v) 5 cos ! u2 1 v2 1 l 2

1 i(u s 1 2 v s 2 1 l s 3)
sin ! u2 1 v2 1 l 2

! u2 1 v2 1 l 2
(46)

The most important ingredient is the deformed addition and symplectic prod-
uct. Defining j 5 (u, v) and

j Ù j 8 [ uv8 2 vu8 (47)

the usual hn case would read

P ( j ) P ( j 8) 5 P ( j 1 j 8)Q( j Ù j 8)

with

Q( j Ù j 8) 5 ei j Ù j 8

This gets deformed to

P ( j ) P ( j 8) 5 P ( j % j 8)Q( j 3 j 8) (48)

where % is the deformed vector sum and 3 the deformed symplectic product

j % j 8 5 j 1 j 8 1 cubic terms (49)

j 3 j 8 5 j Ù j 8 1 quartic terms (50)

Computing the first corrections, we get

j % j 8 5 j 1 j 8 1 1±3 ( j Ù j 8)( j 8 2 j ) 1 higher order terms (51)

Now, it follows from the properties of the Pauli matrices
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ei s ju 5 cos u 1 i s j sin u

that the function P can be expressed in terms of trigonometric functions, so

we must demand periodicity in the arguments. This implies that the classical

phase space G can be one of two spaces (up to diffeomorphi sm), namely the

torus S 1 3 S 1 or the sphere S 2. It is the commutator relations which determine

which of the two spaces we have. Our phase space cannot be written as a

product space U 3 V, where u P U, v P V, as [ s +, s 2 ] 5 2 s 3 ¸ Z(g) [Z(g)
denotes the center of the Lie algebra] and hence the classical phase space

must be S 2, as we would expect (Amiet and Ciblis, 1991; Niehto, 1991;

VaÂrilly and Gracia-BondõÂa, 1989). The torus would correspond to a Lie algebra

[E+, E 2 ] 5 0

[H, E+] 5 aE+

[H, E 2 ] 5 2 bE 2

where a, b are arbitrary positive numbers. A more rigorous argument is given

in the section on general properties.
The requirement Tr(AB) 5 * G A W BW d j together with Tr(A) , ` for

all A in the universal enveloping algebra of su2 implies that | A W | 2
2 5 * G

| A W | 2 d j , ` for all A W P C( G ). Thus C( G ) . L2(S 2).

This shows that, although the classical phase space inherits an addition

making it locally isomorphic to the vector space R2r, this isomorphism will

in general only be local. Thus the classical phase space will be some 2r-
dimensional real, symplectic manifold. The global topological structure of

this manifold could (a priori) be representation dependentÐ we will return to

this point laterÐ but the example suggests that only the commutator relations

matter. The essential point is6

noncommutativity ® nonflatness

Proposition 3. We can write the ª translationº operator P as

P (u, v) 5 f0(u, v) 1 s ? f (u, v) (52)

with

f0(u, v) 5 cos ! u2 1 v2 1 l 2

f1(u, v) 5 iu
sin ! u2 1 v2 1 l 2

! u2 1 v2 1 l 2

f2(u, v) 5 2 iv
sin ! u2 1 v2 1 l 2

! u2 1 v2 1 l 2

6 This actually only holds with some slight modifications, as will be explained later.
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f3(u, v) 5 i l
sin ! u2 1 v2 1 l 2

! u2 1 v2 1 l 2

Proof. Straightforward computation using the properties of the Pauli
matrices. n

The Weyl maps of the generators become

(1)W 5 2f0(u, v) (53)

( s i)W 5 2fi (u, v) (54)

The factors of two can be removed by multiplying the trace by 1/(2s 1 1).

We must demand f0 [ const, which is the same as requiring u2 1 v2 1 l 2

5 const, i.e., we once again get G . S 2. Normalizing such that (1)W 5 1,
we get

u2 1 v2 1 l 2 5 arccos2 1±2 (55)

which then gives l as a function of u, v.
We notice that, had we taken l 5 0, we would have arrived at the most

unfortunate result ( s 3)W 5 0, i.e., we would map the non-Abelian algebra

su2 onto an Abelian one. Instead we have l 5 6 (const2 2 u2 2 v2)1/2 Þ 0.
We note that to lowest order the generators s 1, s 2 (or equivalently s 6 ) get

mapped to u, v, whereas ( s 3)W is quadratic, to lowest order, in (u, v). This

is because the Cartan subalgebra of a semisimple Lie algebra can be obtained

from the root spaces g 6 a 5 FE 6 a as [g a , g 2 a ] # g0 5 h. The Cartan elements

are in this way not truly independent quantities.

Proposition 4. The reproducing kernel K(u, v; u8, v8) and the kernel of
the twisted product D become

1

2
K 5 1 2 fj (u, v) fk(u8, v8) d jk (56)

1

2
D 5 1 2 fj (u, v) fk(u8, v8) d jk 2 fj (u, v) fk(u9, v9) d jk 2 fj (u8, v8) fk (u9, v9) d jk

1 o
ijk

fi (u, v) fj (u8, v8) fk(u9, v9) (57)

Proof. Straightforward computation. n

The proposed WWM formalism has a very beautiful representation in

terms of well-known quantities. For the sake of generality we will work in

a general irreducible representation corresponding to an angular momentum

l. The translation operator can be expanded
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P (u, v) 5 o
mm8

P mm8(u, v) | lm & ^ lm8 | (58)

where

P mm8(u, v) [ ^ lm8 | P (u, v) | lm & 5 ^ lm8 | eiu s 1 2 ivs 2 1 i l s 3 | lm &
[ Dl

m8m(R(u,v)) (59)

where R(u,v) is the rotation given by the angles u, v. The D l
mm8(R) is the usual

representation matrix for rotations (Merzbacher, 1970). For g 5 hn, the

Heisenberg algebra, P ( j ) constitutes a (ray) representation of the group of

translations, whereas for g 5 su2 we get a (proper) representation of the

group of rotations; the phase space becomes the orbits of these groups, i.e.,

the plane and the sphere, respectively. The Weyl map of an ª operatorº [i.e.,
a (2l 1 1) 3 (2l 1 1) matrix] A becomes

A W (u, v) 5 o
mm8

D l
m8m(R (u,v)) ^ lm | A | lm8 & [ o

mm8
D l

m8m Amm8 (60)

A very beautiful result. At this point we should notice that our WWM

formalism is slightly different from the ª standard approachº developed by

VaÂrilly and Gracia-BondõÂa (1989). Our formulas are slightly simpler, as we
do not have Clebsch±Gordon coefficients occurring explicitly. Their ª transla-

tionº operator, which they denote by D l, is essentially our translation operator

P ; in fact D 1/2 , Y00 1 P .

The inverse Weyl map of a function is also interesting to compute. Let

f (u, v) 5 S m fm(u, v) | lm & be some function in C(S 2); then the corresponding

operator, which we will denote by f W, is simply

f W 5 o
mm8 # D l

m8m(R (u,v)) fm(u, v) d V | lm & ^ lm8 | (61)

where d V denotes the measure on S 2.
We can also use the rotation matrices D l

mm8 to write

D ( j , j 8, j 9) 5 Tr P ( j ) P ( j 8) P ( j 9) 5 o
m

D l
mm(R j R j 8 R j 9) (62)

Let us finish this subsection by making a comment on the measure on G .

Clearly this measure d m has to satisfy a few requirements: (1) it must be a

Borel measure (the s -algebra must be given by the topology, such that
continuous functions are measurable), (2) it must be a Radon measure, i.e.,

the measure of a bounded set is bounded, and finally (3) it must be invariant

under the group G (i.e., Haar), of which the operators P ( j ) constitute a

representation. For the Heisenberg algebra this implies that d m is the usual

Lebesgue measure, as this is the only translation-invariant Radon measure

(up to a multiplicative constant), whereas for su2 it implies that d m 5 d V ,
the usual solid angle measure.
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4.1. The Corresponding Loop and Kac± Moody Algebras

Let us also consider the corresponding loop algebra (su2)loop, which will

be our first example of an infinite-dimensional Lie algebra. The commutator

relations are

[ s n
j , s m

k ] 5 2i e j k
l s n 1 m

l (63)

where s n
j 5 s j z

n with z P S 1. Let s Å j denote the sequence { s n
j }n P Z and define

uÅ 5 {un}n P Z. We then introduce our, by now familiar, translation operator:

Definition 3. For a loop algebra formed from a semisimple, finite-

dimensional Lie algebra we set

P loop(uÅ , vÅ ) [ exp(i(uÅ ? s Å + 2 vÅ ? s Å 2 1 l Å ? s Å 3)) (64)

where

s n
6 [

1

! 2
( s n

1 6 i s n
2) (65)

with the obvious notation

uÅ ? s Å j [ o
`

n 5 2 `
un s n

j

In terms of the basis { s n
6 , s m

3 } the commutator relations are

[ s n
1 , s m

2 ] 5 2 s n 1 m
3 , [ s n

3, s m
6 ] 5 6 s n 1 m

6

and we have

P loop( j ) P loop( j 8) 5 P loop( j % j 8)Qloop( j 3 j 8) (66)

Now

uÅ ? s Å j [ o
`

n 5 2 `
un s n

j 5 1 o
`

n 5 2 `
un z n 2 s j [ u(z) s j (67)

so the translation operator for the loop algebra can be expressed in terms of

that of the basic Lie algebra as7

P loop( j ) 5 P ( j (z)) (68)

where j (z) 5 S n j n z n is an analytic function S 1 ® G 5 S 2. This is a general

result. The classical phase space of the loop algebra is the space of functions

7 Thus uÅ must be restricted to series for which S unz
n is a well-defined analytic function.
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S 1 ® G , where G is the classical phase space belonging to the original Lie

algebra. Symbolically

G (gloop) [ G (C ` (S 1 ® g)) . C ` (S 1 ® G (g)) (69)

The deformation function Qloop can be expressed in terms of Q as

Q loop( j 3 j 8) 5 Q( j (z) 3 j 8(z)) (70)

where

j (z) 3 j 8(z) [ o
`

n,m 5 2 `
(unv8m 2 v8nu8m)z n 1 m (71)

Thus the generalization to the loop algebra of a given Lie algebra is trivial.

The Kac±Moody algebra
Ù
su2 at level k can be obtained from the loop algebra as

[ s n
3, s m

3 ] 5 km d n, 2 m

[ s m
3 , s m

6 ] 5 6 s n 1 m
6

[ s n
1 , s m

2 ] 5 2 s n 1 m
3 1 km

The translation operator is defined to be

P KM( j ) 5 P loop( j ) (72)

but with this new nontrivial central extension it satisfies

P KM( j ) P KM( j 8) 5 P KM( j % j 8)QKM( j 3 j 8) (73)

The deformation function QKM differs from Q by terms proportional to k; its
s n

3 term is identical to that of the loop algebra, which means that QKM differs

from Q by a C-number function:

QKM( j 3 j 8) 5 4k( j , j 8)Q( j (z) 3 j 8(z)) (74)

Explicitly,

4k( j , j 8) 5 1 2 k o
`

n 5 2 `
n(unv8n 2 u8nvn) 1 O(k2) (75)

This is also a general result; for an arbitrary Lie algebra g each element un,
vn would be r-dimensional, un 5 (u1

n, . . . , ur
n), etc., and we have to include

a sum over this extra index in the above formula, too, but otherwise the

analysis holds.

We have now seen how the proposed formalism works for a simple

example, g 5 su2. Furthermore, we have seen how to relate the WWM
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formalism for a loop algebra or a Kac±Moody algebra to that of the original

algebra, by which these infinite-dimensional algebras are generated.

As a final comment, we should note that the relationship (72) implies
that the two classical phase spaces G loop, G KM will be identical; the correspon-

dence rules (the Weyl maps) will be different, though, and, in the language

of an earlier subsection, so would their corresponding quantum fiber bundles.

We can summarize this in the following result:

Proposition 5. Let g be a finite-dimensional semisimple Lie algebra,
and denote by gloop and gÃk its corresponding loop and affine Kac±Moody

algebra at level k, respectively. The corresponding classical phase spaces are

denoted by G g, G (gloop), and G (gÃk), respectively, and their ª translationº opera-

tors by P , P loop, and P KM; then:

1. G (gloop) . C ` (S 1 ® G g).

2. P loop( j ) 5 P ( j (z)) and Qloop( j 3 j 8) 5 Q( j (z) 3 j 8(z)) with z P
S 1 and

j (z) 3 j 8(z) 5 o
`

n,m 5 2 `
(unv8m 2 u8nvm)zn 1 m 1 higher order terms

3. G (gÃk) . G (gloop).
4. P KM( j ) 5 P loop( j ) and QKM( j 3 j 8) 5 4k( j , j 8)Qloop( j 3 j 8), where

4k depends on the level k as

4k( j , j 8) 5 1 2 k o
`

n 5 2 `
n(unv8n 2 u8nvn) 1 O(k2)

There is an immediate generalization of the loop algebras to the gauging of

any finite-dimensional Lie algebra. The algebra of local gauge transformations
is locally8

gÄ (M ) 5 C ` (M ® g) (76)

from which

P gÄ (M )(u, v) 5 P g(u(x), v(x)), x P M (77)

and we have the following result:

Corollary 1. With g a semisimple Lie algebra of finite dimension and
M any manifold, we have

8 The group is not given by this simple formula globally, since we do not take the principal
bundle structure into account; globally, the correct group is the group preserving the correspond-
ing principal bundle, see e.g. (Nash 1991). For simplicity, though, we will consider only this
particular group, C ` (M) % g, also sometimes denoted by Map(M , g).
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G (C ` (M ) ^ g) . C ` (M ® G ) 5 C ` (M ) ^ G (g) (78)

5. THE STRUCTURE OF THE CLASSICAL PHASE SPACE

Now, the classical phase space was constructed from a map P (u, v),

and clearly it is closely related to the Lie groups with g as their Lie algebra.

In fact, had l been independent of (u, v), we would have gotten a local Lie
group (Omishchik, 1993). Let G be the smallest connected Lie group with

g as its Lie algebra (note that G might not be simply connected); this then

acts transitively on G , and thus (Omishchik, 1993, 1994), G . G/H0, where

H0 is some subgroup. Hence the classical phase space is a homogeneous

space. From the construction it follows that H0 is essentially a Lie group

with h, the Cartan subalgebra, as its Lie algebra; it is not, however, identical
to simply exp(h), as we have to subtract the center. Hence, H0 5 H \Z, where

H is the smallest connected Lie group with h as its Lie algebra. Very often

we have only a trivial center, so often H0 5 H. For g 5 su2 5 so3, we thus

have G 5 SO3 and H 5 SO2, whereby (trivial center)

G su2 . G so3 . SO3 /SO2 . SU2 /U1 . S 2

as we saw earlier.

We notice that for g semisimple, h, and thus also H, will be Abelian,

whereas for a more general Lie algebra it will just be nilpotent. We can
consider H as the subgroup spanned by the diagonal matrices, when G is a

matrix group. The case of semisimple Lie algebras simplifies enormously by

the Abelianness of the Cartan group, since any Abelian Lie group has the

form Fn 3 Tm, where F is te base field and T is the torus (T 5 S 1, i.e.,

essentially SO2 or U1). Hence for compact Lie groups H 5 Tl.

We should furthermore notice that a homogeneous space is symplectic
if it is of the form G/H v , where H v is the connected component of the kernel

of some antisymmetric two-form v (Gamkrelidze, 1991). An obvious such

2-form is

v 0(u, v, l , u8, v8, l 8) 5 1 uv 2 Ù 1 u8
v8 2 (79)

where Ù is the canonical symplectic product on R2r. Clearly H 5 Ker v 0. It

is important to notice that this not a completely arbitrary choice. It happens

to be the symplectic form suggested by the Cartan splitting of the Lie algebra,
since this is precisely the symplectic form which appears to lowest order in

Q(u, v; u8, v8). As we have seen, v 0 gets deformed to another antisymmetric

2-form v , which can be found order by order from the Baker±Campbell±

Hausdorff theorem. This new 2-form will again vanish on H and nowhere
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else, and hence G is indeed a symplectic manifold when g is semisimple.

When g is not semisimple, however, the symplectic form will be degenerate.

Thus we have the following result.

Proposition 6. For g a semisimple Lie algebra with n 5 dim g , `
with Cartan subalgebra h we have G . G/H, where G, H are the smallest,

connected Lie groups with g, h as their Lie algebras. Furthermore, G is

symplectic.

Now, this was based on the assumption that g was semisimple. For an

arbitrary Lie algebra, this will not be the case. In general the Cartan subalgebra

h is defined as a maximal nilpotent subalgebra which is its own normal-
izer, i.e.,

[h, [h, . . . , [h, h] . . .]] 5 0 (for a sufficiently large n)p
n brackets

{x P g | [x, h] # h} 5 h

For any representation r : g ® gl(V ), where V is some vector space, we can

then write (Omishchik, 1993, 1994)

V 5 %
r

i 5 1
V l i (82)

where

V l 5 {v P V | $ m P N" x: ( r (x) 2 l (x))mv 5 0} (83)

The quantities l are linearly independent functionals on h, i.e., F r 5 { l 1,

. . . , l r} # h*; they are the weights. A root is then defined as a nonzero

weight in the adjoint representation, i.e., D 5 F ad\{0}. We still have a

root decomposition

g 5 h % ( % a P D g a ) (84)

and

[g a , g b ] H # g a 1 b , a 1 b P F
5 0, a 1 b ¸ F

(85)

B(g a , g b ) 5 0, a 1 b Þ 0 (86)

where B( ? , ? ) is the Killing form. Hence we still have some degree of orthogo-

nality of the different root spaces. Unfortunately, it no longer holds that a
P D Þ 2 a P D , so the roots no longer come in pairs. Thus the classical

phase space, which we can still define as we do have a root decomposition,
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will no longer be even-dimensional, and a fortiori not symplectic, in the

general case. Hence

g semisimple Þ G g symplectic

The use of the Cartan algebra as suggested above would constitute one

generalization to nonsemisimple algebras, but I would like to propose another

one, which I think is more appropriate. The reason for the success of the

formalism in the semisimple case can be traced back to the fact that for such
algebras the maximal nilpoent and the maximal Abelian subalgebra coincide:

that the Cartan algebra becomes Abelian. So it was actually the Abeliannes

of h that was used. Furthermore , while Cartan algebras of semisimple Lie

algebras are fairly unique (they are conjugate), this will not in general hold

for Cartan subalgebras of general Lie algebras, whereas Abelian Lie algebras
are characterized completely by the dimension and are thus unique (up to

isomorphism). So what I propose to do is consider not a maximal nilpotent

Lie subalgebra h, but a maximal Abelian subalgebra a. It will turn out

that we will have to refine this a bit further, but for now let us just list

the consequences.

Now, clearly Abelian Lie algebras are also nilpotent, so we can use the
above decomposition (which actually only holds for complex Lie algebras

and not in general for real ones) for any (real or complex or otherwise) Lie

algebra g. The dimensionality s 5 dim a will not, however, be equal to the

rank l of the Lie algebra. Let us call this number the Abelian rank, written

a-rank(g). Obviously

1 1 dim Z(g) # a 2 rank(g) # rank(g) (87)

Let F denote the set of weights l i in the adjoint representation, and let D 5
F \{0}; then we once more have a decomposition

g 5 g0 % ( % a P D g a ) (88)

with a 5 g0 and

[g a , g b ] H 5 0, a 1 b ¸ F
# g a 1 b , a 1 b P F (89)

[g0, g a ] # g a (90)

We should notice that this construction implies that two Lie algebras have

the same classical phase space if and only if one is the central extension of

the other or the one can be written as the direct sum of the other and an

Abelian algebra. In other words, Abelian algebras get mapped to the singleton

set {0}. This of course differs from the definition of G 0 for an Abelian algebra
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given earlier, but agrees with our calculations for su2. In fact, this is the

reason why we inserted the superscript 0 in the definition of the Abelian

case. Furthermore, this implies that our formalism assigns the same classical
phase space (up to isolated points, which can always be discarded on physical

grounds) to two algebras g1, g2 (dim g2 $ dim g1, say) which differ by the

addition of an Abelian algebra a (i.e., g2 5 g1 1 a) such that [a, g1] # Z(g2),

for instance when g2 is a central extension of g1 or when the sum is direct.

The only exception to this is when g1, say, is itself Abelian; then G g2 .
G 0

g1, so the formalism is consistent with our choice of phase space for an
Abelian Lie algebraÐ an example is of course the Heisenberg algebra, which

is a central extension of R2n. Note, however, that even though the classical

phase spaces coincide, their correspondence rules given by the operators P 1,2,

Q1,2 differ, as will their quantum fiber bundles.

As will be shown in the next section, one can modify the definition of

a to arrive at a scheme that works equally well for Abelian as for non-Abelian
Lie algebras. This modification will not alter the results given thus far, though,

results which we can summarize in the following proposition.

Proposition 7. Two finite-dimensional Lie algebras g1, g2 have the same

classical phase spaces up to isolated points if and only if one is the semidirect

sum of an Abeliam algebra a and the other, say g2 5 g1 1 a, with [a, g1]

# Z(g2). A special case is when g2 is a central extension of g1.

5.1. Nilpotent and Solvable Lie Algebras

Some particular important cases of nonsemisimple Lie algebras are the
nilpotent and solvable algebras. Let us make a few comments on the WWM

formalism of these. Recall that a Lie algebra g is solvable if its derived series,

(g(i)), with g(i) 5 [g(i 2 1), g(i 2 1)] for i $ 1 and g(0) 5 g, becomes trivial after

a certain number of steps, i.e., g(i) 5 0 for some value of i. Similarly, a Lie

algebra is nilpotent if the series (g(i)) with g(i) 5 [g, g(i 2 1)] becomes trivial

after a certain number of steps. A nilpotent Lie algebra is also solvable, and
any Lie algebra can be written as the semidirect sum of a solvable and a

semisimple Lie algebra (Levi decomposition). Hence once we know how to

deal with solvable algebras as we can in principle handle any Lie algebra.

As far as solvmanifolds (i.e., homogeneous spaces of a solvable Lie

group) are concerned, let me just mention that both the MoÈ bius band and

the Klein bottle are both solvmanifolds, and that any solvmanifold can be
written as a fiber bundle over a compact solvmanifold with fiber Rk for some

k (Omishchik, 1993). When the manifold is even a nilmanifold (i.e., when

G is nilpotent), then this fiber bundle can be trivialized. Indeed, if M is any

nilmanifold, then (Omishchik, 1993)
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M . M * 3 Rn (91)

where M * is a compact nilmanifold. If M 5 G/H, then M * 5 aH/H, where
aH denote the algebraic closure (i.e., the closure in the Zariski topology) of

H. Hence, when H comes from the maximal Abelian subalgebra of g, the

Lie algebra of G, then ah 5 h, so aH/H is discrete, i.e.,

G . Rn 3 discrete group, n 5 dim g 2 dim h (92)

This makes the case of nilpotent Lie algebras very simple (as we already

noticed when we dealt with the Heisenberg algebra).

One should notice that we can obtain solvable Lie algebras from nilpotent

ones by the following exact sequence:

0 ® g8 ® g ® g/g8 ® 0 (93)

When g is solvable, then g8 is the nil-radical, i.e., the largest nilpotent

subalgebra. Thus, solvable Lie algebras can be obtained as extensions of
nilpotent Lie algebras by Abelian ones. We will return to extensions when

we deal with C*-algbras.

Now, a priori the suggested WWM map will not be a bijection for

nonsemisimple Lie algebras, as we do not a priori have g0 # ø a , b P D [g a , g b ].

Thus we need to refine our definition somewhat. For semisimple Lie algebras
we have g8 [ [g, g] 5 g; hence the maximal nilpotent or Abelian subalgebra

of g is also the maximal nilpotent/Abelian subalgebra of the derived algebra

g8 and vice versa. What we need in the general case, then, is the maximal

Abelian subalgebra, which has the largest overlap with the derived algebra.

This is ensured if we pick a as the largest Abelian subalgebra of g8.

Definition 4. Let g be a finite-dimensional Lie algebra and let a be the

maximal Abelian subalgebra of g8 5 [g, g]. With this, writing D 5 D + ø
D 2 , where D + consists of positive roots, D 2 of negative roots, the ª translationº

operator becomes

P (u, v) 5 exp 1 i o
a P D 1

u a E a 2 i o
a P D 2

v a E a 1 i l j (u, v)Hj 2
where the Hj generate a.

Notice that for the two cases already treated, namely Abelian and

semisimple Lie algebras, respectively, this definition agrees with the old
results. When g is semisimple, then g8 5 g and a 5 h becomes the Cartan

algebra, whereas for g 5 Fd Abelian we have g8 5 0, leading to G . g/{0}

5 g 5 Fd. Furthermore, for g 5 h1, the Heisenberg algebra, we have a 5
R1, whence G (h1) . h1 /R . R2.



Wigner± Weyl± Moyal Formalism on Algebraic Structures 723

6. SOME FURTHER EXAMPLES

We saw that the classical phase space of su2 5 so3 turned out to be S 2.

Let us now consider a few more examples very briefly.

Let us start with the Lie algebra of the noncompact group SU(1, 1); it

consists of traceless 2 3 2 matrices (in the fundamental representation)
which obey

XJ 5 2 JX ² , J 5 1 1 0

0 2 1 2 5 s 3 (94)

The commutator relations are

[H, X1] 5 2 2X2 (95)

[H, X2] 5 2 2X1 (96)

[X1, X2] 5 2 2iH (97)

and a representation is

X1 5 1 0 1

1 0 2
X2 5 1 0 i

2 i 0 2 5 2 s 2

H 5 iJ 5 i s 3

We can get from a representation of su2 to one of su1,1 by making the

transformation (a ª Wick rotationº )

s 1 j s 1 5 X1, s 2 j 2 s 2 5 X2, s 3 j i s 3 5 H (98)

Inserting this in P (u, v), we get

P su1,1(u, v) 5 eiu s 1 1 iv s 2 2 l s 3 (99)

For the su2 case we could introduce spherical coordinates for (u, v, l ); here

it turns out that we get the following coordinates:

u 5 z cos a cosh b

v 5 z sin a cosh b

l 5 z sinh b

allowing us to write
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P su1,1(u, v) 5 cos z 1 i(cos a cosh b s 1 1 sin a cosh b s 2 (100)

1 i sinh b s 3) sin z

and the classical phase space becomes

G (su1,1) . {(u, v, l ) P R3 | u2 1 v2 2 l 2 5 const} [ S 1,1 (101)

i.e., a hyperboloid.

Now, from su2 and su1,1 we can construct a number of important Lie

algebras, by noting (Omishchik, 1994) so4 5 su2 % su2, so2,2 5 su1,1 % su1,1

and u*2 (H) 5 su2 % su1,1, where H denote the ring of quaternions. The Lie
algebra so3,1, the Lorentz algebra, can also be constructed by noting so3,1 5
sl2(C)R 5 su2 % i ? su2 5 su2 ^ C, where sl2(C)R means sl2(C) considered

as a real algebra. These Lie algebras consists of 4 3 4 matrices of the form

so4 . su2 % su2 1
0 a b g

2 a 0 a b

2 b 2 a 0 c

2 g 2 b 2 c 0 2 (a, b, c), ( a , b , g ) P R3

so3,1 . sl2(C)R 1
0 i a i b i g

2 i a 0 a b

2 i b 2 a 0 c

2 i g 2 b 2 c 0 2 (a, b, c), ( a , b , g ) P R3

so2,2 . su1,1 % su1,1 1
0 x i a i b

2 x 0 i g i d
2 i a i g 0 z

2 i b 2 i d 2 z 0 2 x, z P R, a , b , g , d P R

u*2 (H) . su2 % su1,1 1
0 x a b

2 x 0 bÅ d

2 a 2 bÅ 0 xÅ

2 b 2 d 2 xÅ 0 2 x, b P C, a, d P R

We must thus find an expression for G g1 % g2. Let us start with so4 5 su2 %
su2.We simply get

P so4(u1, v1, u2, v2) 5 P su2(u1, v1) P su2(u2, v2) (102)

Qso4(u1, v1, u2, v2) 5 Qsu2(u1, v1)Qsu2(u2, v2) (103)

This is a general result:

Proposition 8. If g1, g2 denote two Lie algebras, then
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P g1 % g2 5 P g1 P g2 (104)

Qg1 % g2 5 Qg1Qg2 (105)

Similarly, if g can be written as the sum of two Lie algebras with [g1, g2] P
Z(g), then

P g 5 P g1 P g2

Qg 5 Qg1Qg2qZ

where qZ is some element in exp(Z(g)). It also follows from this that

P g 5 P g/h P h (106)

when h is any ideal in g. Thus the classical phase spaces become

G g1 % g2 5 G g1 3 G g2 (107)

G g1 1 g2 5 G g1 3 G g2 (when [g1, g2] P Z(g)) (108)

We should emphasize once more that the classical phase spaces of an algebra

and its central extensions are isomorphic (up to isolated points); the correspon-

dence between algebra and functions on phase space is different, though, and

hence so are the corresponding quantum fiber bundles. Such central extensions

are of great importance when g1 5 g2 the algebra g is then a Heisenberg
double of g1.

9 In a typical gauge theory, for instance, we have two set of

operators f k, p k both of which span some Lie algebra g1 at each point x and

each instant t. The algebra is not just the gauging of g1 % g1, but a central

extension of it, as we have to impose [ f k(x, t), p j (x8, t8)]t 5 t8 5 i d (x 2 x8) d j k,

the canonical relation.

For the algebras just mentioned we have at once

G so4 5 S 2 3 S 2 (109)

G so2,2 5 S 1,1 3 S 1,1 (110)

G u*
2(H) 5 S 2 3 S 1,1 (111)

The Lorentz algebra is somewhat more complicated. It arises as a complexifi-
cation of su2, and there is thus a nontrivial automorphism exchanging the

real and complex parts of a Lie element. This means that

9 In fact, for g1 5 g2 5 R we get the usual Heisenberg algebra. This shows that the new
correspondence which the central extension introduces can be seen as related to quantization.
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G so3,1 5
SO3 3 SO3

SO2 3 SO2

(112)

where SO2 3 SO2 is embedded in some nontrivial way in SO3 3 SO3 because

of this automorphism. But noting that SO3,1 is thus a complexification of su2,

i.e., so3,1 5 su2 ^ C, we get

G so3,1 5 G su2 ^ C . G su2 ^ C 5 S 2 ^ C (113)

i.e., we can view the phase space of a complexification as a kind of ª complexi-

ficationº of the original phase space.

Let us now move on to a Lie algebra of rank two, namely su3, represented

by the Gell-Mann matrices l i , i 5 1, . . . , 8. We would expect the classical
phase space to have a dimensionality of 8 2 2 5 6. The key ingredient in

the su2 case was the useful relation s i s j 5 i e ij
k s k, which allowed us to get

a nice expression for P (u, v) in terms of trigonometric functions. For su3 we

can use

[ l a, l b] 5 ifab
c l c (114)

{ l a, l b} 5 4±3 d ab 1 2dbb
c l c (115)

where fabc is totally antisymmetric, whereas dabc is totally symmetric. From

this it follows that

l a l b 5 ifab
c l c 1 2±3 d ab 1 dab

c l c (116)

Thus any function f of the generators can be written as

f ( l ) 5 f0 1 l a f a (117)

where f0, f a are complex numbers, independent of the generators. These can

be obtained from f by taking traces:

f0 5 1±3 Tr f ( l )

f a 5 1±3 Tr( f ( l ) l a)

Particularly useful for us are monomials (u ? l )n; we write

(u ? l )n 5 an(u) 1 l ab
a
n(u) (118)

the coefficients satisfying

an+1 5 2±3 u ? bn (119)

ba
n 1 1 5 anu

a 1 ubbc
nd

a
bc (120)
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with a0 5 1, a1 5 0, ba
0 5 0, ba

1 5 ua. Explicitly, the kernel D and the

translation operator P becomes

P (u) 5 c0(u) 1 l aca(u) (121)

D (u, v, w) 5 c0(u)c0(v)c0(w) 1 2±3 d ab o
perm

ca(u)cb(v)c0(w)

1 2±3 (dabc 1 ifabc)c
a(u)cb(v)cc(w) (122)

where

c0(u) [ o
`

n 5 0

i n

n!
an(u)

ca(u) [ o
`

n 5 0

i n

n!
ba

n(u)

The product of two translation operators becomes

P (u) P (v) 5 c0(u)c0(v) 1 2±3 d abca(u)cb(v)

1 l c(c0(u)cc(v) 1 cc(u)c0(v) 1 (if ab
c 1 d ab

c)ca(u)cb(v)) (123)

whereby the reproducing kernel, in this representation, reads

K(u, v) 5 c0(u)c0(v) 1 2±3 d abca(u)cb(v) (124)

The classical phase space becomes

G su3 5 SU3 /S(U1 3 U1 3 U1) 5 SU3 /U1 3 U1 (125)

In general

G sun 5 SUn /S(U n
1) 5 SUn /U n 2 1

1 (126)

with U k
1 5 U1 3 ? ? ? 3 U1 (k factors). I do not think these homogeneous

spaces have any name.

We can get some insight into the structure of G su3 by evaluating the

Weyl symbols of the generators. Using (116) and the fact that the generators
are traceless, one easily sees (the factor of two can of course be removed by

a suitable normalization of the trace)

(1)w 5 2c0(u) (127)

( l a)W 5 2ca(u) (128)

thus we must once more demand c0 5 const, which imposes a constraint on

the variable ua, deforming the phase space from simply R6 to some 6-manifold,

just like for su2, where the requirement f0 5 const implied G su2 . S 2.

Furthermore, the symbol of a product becomes
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( l a l b)W 5 2c0(u) d ab 1 2(ifab
c 1 dab

c)cc(u) (129)

Comparing this with

(ca * cb)(u) 5 # ca(v)cb(w) D (u, v, w) dv dw (130)

we get

d ab 5
3

2
c2

0 # ca(v) dv # cb(w) dw

1 d cd # cc(v)ca(v) dv # cd(w)cb(w) dw (131)

(dab
c 1 ifab

c) 5
1

3
c0 # (cc(v) 1 cc(w))ca(v)cb(w) dv dw

1
1

3
(da8b8

c 1 ifa8b8
c) # cb8(v)ca8(w)ca(v)cb(w) dv dw w (132)

which gives us some insight into the nature of the functions ca(u).

As an example of an infinite-dimensional Lie algebra we can consider

the Witt algebra, i.e., the algebra of diffeomorphisms of the circle. The

commutator relations are

[An, Am] 5 (m 2 n)Am+n, n, m P Z (133)

Our largest Abelian subalgebra is the one generated by A0; hence

P (u, v) 5 exp 1 i o
n . 0

(un An 2 vn A 2 n) 1 i l A0 2 (134)

Now, from A ²
n 5 A 2 n we see that uÅ n 5 vn; hence the classical phase space

consists of sequences (un, vn) of complex numbers such that uÅ n 5 vn and n
5 1, 2, 3, . . . . These can be represented just as well by sequences (xn) with

xn P C, n P Z satisfying x0 5 0 and xÅ n 5 x 2 n, which again can be interpreted
as a Fourier series, i.e.,

G Witt 5 H f P C ` (S 1) | f ( u ) 5 o
`

n 5 1
(cne

in u 1 c 2 ne
2 in u J (135)

5 { f P C ` (S 1) | f (0) 5 0} (136)

This contains also the spaces of L p functions on S 1 which vanish at u 5 0.

The deformed sum is seen to be
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1 uk

vk 2 % 1 u8k

v8k 2

5 1
uk 1 u8k 1

1

2
i o

k 2 1

n 5 1

(k 2 2n)uku8k 2 n 2
1

2
ik(uk l 8 2 u8k l )

1
1

2
ik o

k 2 1

n 5 1

(unv8n 2 k 2 vn 2 ku8n) 1 ? ? ?

vk 1 v8k 1
1

2
i o

k 2 1

n 5 1

(k 2 2n)vkv8n 2 k 1
1

2
ik(vk l 8 2 v8k l )

2
1

2
ik o

k 2 1

n 5 1
(vnu8n 2 k 2 un 2 kv8n) 1 ? ? ? 2 (137)

and the deformed symplectic product to be

1 uv 2 3 1 u8
v8 2 5 o

k
k(vku8k 2 ukv8k) 1 ? ? ? (138)

similar to the results we found for the loop and Kac±Moody algebras.

Now, the Virasoro algebra

[Ln, Lm] 5 (m 2 n)Ln 1 m 1 d n, 2 mcn (139)

is just a central extension of the Witt algebra and will hence have the same

classical phase space. We have seen earlier that also the classical phase spaces

of the loop algebras of semisimple Lie algebras and their corresponding
Kac±Moody algebras could be interpreted as function spaces over the unit

circle S 1. We will encounter more function spaces when we move on to

consider C*-algebras as well.

Let us also briefly consider a more odd Lie algebra. The simplest algebra

in which a ù g8 5 0 is the two-dimensional solvable Lie algebra [h, x] 5
x; here the only weight is a 5 1. A simple representation is h 5 x d/dx, x
5 x. The dimensionality of the classical phase space is one, and from the

noncommutativity we see that we can take G . S 1. This algebra has been

considered by Isham (1984) and Isham and Kakas (1984), in the context of

developing a general quantization algorithm for nontrivial phase spaces. Some

final important examples are the PoincareÂalgebra iso(3, 1) and the Galilei

algebra gal3. The PoincareÂalgebra is the semidirect sum of R4 and so(3, 1)
5 su2 ^ C. Clearly R4 is the maximal Abelian subalgebra, and we get a

classical phase space of dimension 10 2 4 5 6. In fact the space must

essentially be SU2 ? SU2 . S 3 ? S 3, where the dot denotes some kind of product.

It is rather surprising that the dimensionality becomes six and not eight as
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one would have expected10 and, furthermore , that it is a kind of product of

two compact manifolds. For the Galilei algebra we get similarly a six-

dimensional phase space (as in this case was to be expected), but this time
SU2 ? R3 . S 3 ? R3, i.e., the limit c ® ` which leads from the Galilei algebra

to the PoincareÂalgebra (c is the velocity of light), leads to an ª unwrappingº

of one S 3, or, equivalently, that the finiteness of the velocity of light leads

to a compactification of R3. This suggests that InoÈ nuÈ ±Wigner contractions

leads to a ª decompactificationº of the classical phase space.

We have succeeded in obtaining Lie algebras yielding a number of two-
dimensional manifolds as their classical phase spaces as shown in Table I.

We would like to suggest that any surface can be obtained in this way, and

as an example we will construct a Lie algebra with the MoÈ bius band as its

classical phase space. The algebras in Table I exhaust all nontrivial three-

dimensional Lie algebras, hence the dimensionality of the wanted Lie algebra

must be at least four. Since the MoÈ bius band is a solvmanifold, but not a
nilmanifold, this algebra must be solvable, but not nilpotent. On the other

hand, the cylinder and the MoÈ bius band differ only in the latter being a

nontrivial bundle, but otherwise they both have the same local structure R
3 loc S 1, where the subscript on 3 loc is there to remind us that the product

is only local in general. So let us start with the algebra behind the cylinder

[h, e] 5 e, [h, f ] 5 [e, f ] 5 0

and let us add a fourth generator g mixing e, f,

[g, e] 5 a f, [g, f ] 5 b e

The Jacobi identity then implies a 5 0. We furthermore find g8 5 {e}, i.e.,
g9 5 0, so the algebra is solvable, while gn 5 g8, so the algebra is not

nilpotent. The largest Abelian subalgebra is h 5 span{h, g}, and hence the

dimensionality of the classical phase space is indeed two. Since G is a

Table I. Some Particularly Simple Two-Dimensional Manifolds and Their Corresponding

Lie Algebras

Space Algebra

Plane R2 [e, f ] 5 h [e, h] 5 [ f, h] 5 0 h1

Cylinder R 3 S 1 [e, f ] 5 [h, f ] 5 0 [h, e] 5 e

Torus S 1 3 S 1 [e, f ] 5 0 [h, e] 5 ae [h, f ] 5 2 bf

Sphere S 2 [e, f ] 5 h [h, e] 5 e [h, f ] 5 2 f su2 5 so3 5 sl2

Hyperboloid S 1,1 [e, f ] 5 2 h [h, e] 5 e [h, f ] 5 2 f su1,1 5 so2,1 5 sl1,1

10 This might be due to the mass-shell constraint p2 5 m2 for the four-momentum together with
the requirement that the particle move along a timelike geodesic, though.
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solvmanifold of dimension two, it has the form of a (nontrivial) fiber bundle

with fiber R over some compact, one-dimensional manifold M1,

G . R 3 loc M1

and it is easy to see that the only possibility is M1 5 S 2, from which we get

G . MoÈ bius band (140)

One could then go on to find Lie algebras corresponding to surfaces of genus
more than one, and, furthermore, to relate the topological characteristics

(Euler number, Stiefel±Whitney classes) to algebraic properties of the Lie

algebrasÐ a kind of generalized index theorem Ð a point I plan to return to

in a subsequent paper.

7. FERMIONIC DEGREES OF FREEDOM

Fermions are described by anticommuting creation and annihilation

operators

{ai , aj } 5 {a
²
i , a

²
j } 5 0 (141)

{ai , a
²
j } 5 d ij (142)

We have no classical phase space at our disposal. So we cannot construct

an isomorphism between an algebra of operators and a Hilbert space of

functions on some vector space (or manifold), i.e., as a space of functions
with C-number arguments. Rather, we have to define Grassmann numbers

(which we will also refer to as G-numbers), abstract quantities satisfying

{ u i , u j } 5 { u Å i , u Å j } 5 { u i , u Å j } 5 0

We can treat these as ª coordinatesº and their corresponding differential opera-
tors - i , - Å i as the ª momentumº variables.

The generalization is now straightforward.

Definition 5. For fermionic creation and annihilation operators a, a ²

we put

P ( u , h ) [ exp(i u a ² 2 i h a) (143)

where u , h are G-numbers anticommuting with the second-quantization opera-
tors as well.

This operator will be our basis for developing a WWM formalism for

fermionic degrees of freedom. The following proposition is trivial:

Proposition 9. The ª translationº operator satisfies
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P ( u , h ) P ( u 8, h 8) 5 P ( u 1 u 8, h 1 h 8)Q( u , h ; u 8 h 8) (144)

where

Q( u , h ; u 8, h 8) 5 exp( u h 8 1 h u 8) (145)

We notice that this is in fact a C-number, being the product of two G-
numbers. We also note that the sign in this G-symplectic product differs from

the symplectic product of two C-numbers. No deformation of the sum or the

symplectic product occurs here, as the G-numbers are nilpotent, u 2 5 h 2 5
0. The Wigner function which follows from this has been derived indepen-

dently by Abe (1992).

We easily get

aW 5 i u (146)

(a ² )W 5 2 i h (147)

Thus the conjugation of functions becomes

( f ( u , h ))* 5 fÅ ( h , u ) (148)

where the bar denotes Grassmann conjugation and the twisted product

becomes

( f * g)( u , h ) 5 2( f4 g4 1 3 f3 g2 2 f2 g3 1 2 f1 g4 1 2 f4 g1)

1 2(2 f1 g2 2 2 f2 g1 2 3 f2 g4 2 3 f4 g2) u

1 2(2 f3 g1 2 2 f1 g3 2 f3 g4 2 f4 g3) h

1 2(2 f4 g4 2 6 f3 g2 1 2 f2 g3) u h (149)

where we have written f 5 f1 1 f2 u 1 f3 h 1 f4 u h and similar for g. Contrasting

this formula for the twisted product with the usual product

( fg)( u , h ) 5 f1 g1 1 ( f1 g2 1 f2 g1) u 1 ( f1 g3 1 f3 g1) h

1 ( f1 g4 1 f4 g1 1 f2 g3 2 f3 g2) u h

we see that the WWM formalism introduces even more noncommutativity.

With fermionic degrees of freedom within reach, the extension to super-Lie

algebras (DeWitt, 1984; Wess and Bagger, 1992) is straightforward.

7.1. Clifford and Spin Algebras

I do not know of any concrete examples where the quantum phase space

is a Clifford algebra, except of course the already treated case of g 5 su2.

Nevertheless it might be interesting to have a look at the WWM formalism
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for such algebras. Now, a Clifford algebra C(r, s) is by definition an algebra

in n 5 r 1 s generators g a satisfying

{ g a, g b} 5 2gab (150)

where gab is a metric with signature (r, s). We will simply assume

gab 5 h ab [ diag(1, 1, . . . , 1, 2 1, , 2 1, . . . , 2 1) (151)pp
r s

Note that the definition implies ( g a)
2 5 6 1, hence dim C(r, s) 5 2r+s. The

case of su2 corresponds to r 5 2, s 5 0 with g 1 5 s 1, g 2 5 s 2, s 3 5 1±2 g 1 g 2.

Our ª classical coordinatesº j i will be taken to be G-numbers anticommuting

with the g -matrices, { j i, g j } 5 0. This would give a new representation of
a classical phase space of this algebra, in other words, su2 as a Lie algebra

must be treated differently from su2 as a Clifford algebra.

Let me just sketch the results for the usual Clifford algebra C(1, 3), the

Dirac algebra. The translation operator is defined in the most natural way

as follows:

Definition 6. Let G I denote the generators of the Clifford algebra C(r,
s); then

P ( j ) 5 ei j I G I
(152)

where j I are G-numbers anticommuting with the Clifford generators.

In the particularly important case of the Dirac algebra we have the

following proposition:

Proposition 10. In the particular case of the Dirac algebra C(1, 3),
we have

P ( j ) 5 (1 1 i j 0) 1 1 j Ä 0 g 5 1 j m g m 1 j Ä m g 5 g m 1 j mn s mn

where s mn 5 1±4 i[ g m, g n] and where m, n 5 0, 1, 2, 3.

Proof. For r 5 3, s 5 1Ð the Dirac algebraÐ we have

P ( j ) [ exp(i j 01 1 i j Ä 0 g 5 1 i j m g m 1 i j Ä m g 5 g m 1 i j mn s mn) (153)

It has the decomposition (as does any function on a Clifford algebra)

P ( j ) 5 P 0( j ) 1 P Ä 0( j ) g 5 1 P i( j ) g i 1 P Ä i( j ) g i g 5 1 P ij ( j ) s ij (154)

with

P 0( j ) [ 1±4 Tr P ( j ) (scalar)

P Ä 0( j ) [ 1±4 Tr( P ( j ) g 5) (pseudoscalar)
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P i( j ) [ 1±4 Tr( P ( j ) g i) (vector)

P Ä i( j ) [ 1±4 Tr( P ( j ) g i g 5) (axial vector)

P ij ( j ) [ 1±4 Tr( P ( j ) s ij ) (tensor)

But, as the coefficients are G-numbers, we have quite simply

P 0( j ) 5 1 1 i j 0

P Ä 0( j ) 5 j Ä 0

P m( j ) 5 j m

P Ä m( j ) 5 j Ä m

P mn( j ) 5 j mn

QED.

Thus, it also follows that

( g m)W 5 P m( j ) 5 i j m (155)

while

(1)W 5 P 0( j ) 5 1 1 i j 0 (156)

and so on. It follows from this that it is natural to demand j 0 5 0, which

will lead to a dimensionality of G of dim C(r, s) 2 1 5 2r+s 2 1. Thus we

have the following result:

Proposition 11. Let G denote the classical phase space of a Clifford

algebra C(r, s); then

dim G 5 dim C(r, s) 2 1 5 2r+s 2 1

as a Grassmann space.

One should note that this always gives an odd-dimensional space for

any values of r, s. For the Clifford algebra su2 we thus have an alternative

classical phase space, namely a 3-dimensional Grassmann space.

By a direct computation one proves the following:

Proposition 12. For the case of the Dirac algebra C(1, 3), the following

results hold: The product of two ª translationº operators is

S ( j , j 8) [ P ( j ) P ( j 8) 5 S 0 1 S Ä 0 g 5 1 S i g i 1 S Ä i g i g 5 1 S ij s ij (157)

where
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S 0 5 j Ä 0 j Ä 80 2 4i( h mp h nq 2 h mq h np) j mn j 8pq (158)

S Ä 0 5 2 4i e mnpq j mn j 8pq (159)

S m 5 2 j Ä 0 j Ä 8m 1 j Ä m j Ä 80

1 4i( h np d q
m 2 h nq d p

m)( j n j 8pq 1 j pq j 8n) 2 4i e npq
m( j Ä n j 8pq 1 j pq j Ä 8n) (160)

S Ä m 5 2 j Ä 0 j 8m 1 j m j Ä 80

2 4i e npq
m( j n j 8pq 2 j pq j 8n) 1 i( h np d q

m 2 h nq d p
m( j Ä n j 8pq 1 j pq j Ä 8n) (161)

S mn 5 4i e mn
pq( j pq j Ä 80 1 j Ä 0 j 8pq)

1 4i( h pq h rs h mn 2 h qr d s
m d p

n 1 h rs d p
m d q

n 2 h sp d q
m d r

n) j pq j 8rs (162)

The reproducing kernel K( j , j 8) becomes

K( j , j 8) [ 1±4 Tr( P ( j ) P ( j 8)) 5 1±4 S 0( j , j 8)

5 j Ä 0 j Ä 80 2 4i( h mp h nq 2 h mq h np) j mn j 8pq (163)

while the kernel for the twisted products takes the form

D ( j , j 8, j 9) [ 1±4 Tr( P ( j ) P ( j 8) P ( j 9))

5 K( j , j 8) 1 K( j 8, j 9) 1 K( 2 j , j 9) (164)

Now, any Clifford algebra can be written

C(r, s) 5 C0(r, s) % C1(r, s) % C2(r, s) % ? ? ? % Cn(r, s) (165)

[ Ceven(r, s) % Codd(r, s) (166)

where Ck(r, s) consists of all powers of k different generators, i.e., C0 consists

of the scalars, C1 of the generators, C2 of products of the form g i g j and so
on, while Ceven, Codd consist of all linear combinations of products with an

even and odd number of generators, respectively. To each such Clifford

algebra two Lie groups are defined, namely11

Pin(r, s) 5 ^ C1 & (167)

Spin(r, s) 5 Pin(r, s) ù Ceven(r, s) (168)

and Pin(r, s) is homomorphic to O(r, s). It furthermore turns out that the

corresponding Lie algebra spin(r, s) is isomorphic to so(r, s), so we do not

get any new classical phase spaces from that, even though the corresponding

11 The symbol ^ C1 & denotes the group generated by all the unit vectors in C1, i.e., the group of
products of generators g i .



736 Antonsen

Lie groups Spin(r, s) are inequivalent to any classical matrix group in all but

a few cases (GoÈ ckeler and SchuÈ cker, 1987), as Spin(r, s) is a covering group

of SO(r, s). If, on the other hand, we do not consider spin(r, s) as a classical
Lie algebra, but instead consider it as the Lie algebra of the nonclassical Lie

group Spin(r, s), which is built from the Clifford algebra C(r, s), then we

can get new phase spaces, namely Grassmann spaces. This leads, then, to

an alternative for the classical Lie algebras so(r, s), as we have already seen

for su2 5 so(3). By construction, we must also have morphisms between the

two alternatives, the classical differentiable manifold SO(r, s)/H and the
Grassmann spaces, thus allowing for the translation of problems of analysis

on SO(r, s)/H into problems involving G-numbers, a possibility which should

be of quite some practical importance. One important difference is that,

considering sor,s as a Lie algebra, we get a symplectic manifold, whereas

considering it as a Clifford algebra, we get an odd-dimensional Grassmann

space.

8. QUANTUM-LIE ALGEBRAS, INTERMEDIATE STATISTICS,
ETC.

We will make some very brief (and rather sketchy) comments on the

possible extension of the above method to quantum groups and related
structures.

Given a (semisimple) Lie algebra g, we can form its corresponding

quantum universal algebra Uq(g) (Fuchs, 1992), which is a deformed Lie

algebra. A basis for this can be chosen in analogy with the ordinary Lie

algebra case such that it satisfies

[H i, H j ] 5 0

[H u, H j
6 ] 5 6 A jiE j

6

[E i
1 , E j

2 ] 5 d ij ë H i û

where the only new thing is the appearance of

ë H i û 5 ë H i û q [
qH i/2 2 q 2 H i/2

q1/2 2 q 2 1/2

on the right-hand side above. It is here that the quantum deformation q enters.

We see that we can carry the formalism developed above for an arbitrary

Lie algebra g over to its quantum universal algebra Uq(g) by making the

substitution

H i ® ë H i û

in the definition of Q(u, v; u8, v8), but not in P . The logarithm of Q would
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then be a highly nonlinear function of H i (it will be linear in ë H i û , though)

and this nonlinearity will be a measure of the deformation. The corresponding

quantum fiber bundle will now involve a double deformation of a classical
vector bundle. Would ª second-quantized fiber bundleº be a good name for

such a structure?

We will just make some very brief comments on some further generaliza-

tions. Bosons are described in terms of commutators and fermions in terms

of anticommutators. Introducing the spin s of the underlying field (integral

for bosons, half-integal for fermions), we can write this as

[ak, a
²
l ]s [ aka

²
l 2 ( 2 1)2s 1 1a

²
l ak 5 d kl (169)

An obvious generalization is to allow s to be any rational or even real

number; we can then define statistics interpolating between Bose±Einstein

and Fermi±Dirac statistics. Now, given two fermionic operators a, a ² , we
can define bosonic ones by defining

A 5 a a, A ² 5 b a ²

Requiring that ( a , b ) are G-numbers which anticommute with the Fermi

operators, we have [A, A ² ] 5 a b , so when b 5 a
Å

and a is normalized to
unity, then A, A ² are ordinary Bose operators. We can do a similar trick here

by formally defining ª numbersº which satisfy

[ a , b ]s 5 0 Þ a b 5 ( 2 1)2s+1 b a

This will give us an ordinary Lie algebra in the formal operators Ak, A ²
k and

we know the WWM formalism for these, hence we can extend it to these

intermediate statistics as well by using this little trick. The symplectic product

would then read

( a , b ) Ù ( a 8, b 8) 5 a b 8 2 ( 2 1)2s+1 b a 8 (170)

This leads to an alternative for quantum Lie algebras. If we have relations like

aka
²
l 5 qRkl

k8l8a
²
l8ak8 (171)

then we need coordinates satisfying

xk yl 5 qRkl
k8l8yl8xk8 (172)

xk xl 5 xlxk (173)

yk yl 5 ylyk (174)

So G would become a braided space or a quantum space. We can thus

establish morphisms between ordinary manifolds [g considered as a Lie

algebra, or Uq(g) considered as a deformation of g], Grassmann manifolds
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[g 5 so(r, s) considered as a spin algebra], and braided spaces [Uq(g) consid-

ered as an algebra of transformations on such spaces]. Such morphisms are

of interest in their own right, as they show relationships between what would
otherwise appear as unrelated areas of mathematics.

One could further consider general nonlinear algebras, i.e., algebraic

structures satisfying

[ l i , l j ] 5 iFij( l ) (175)

of which a quantum Lie algebra is but a particular case. As always, we
will have different options for the classical phase space, depending upon how

we interpret this algebraic structure [i.e., as a deformation of an ordinary

(super-)Lie algebra, or as an algebra of automorphisms of some noncommuta-

tive structure aÂla braided spaces]. One could study parafermions and parabo-

sons in this way, for instance.

9. COMMENT ON FINITE GROUPS

All our emphasis so far has been on ª continuousº structures, Lie algebras,

and structures derived therefrom; before we move on to discuss operator

algebras, it is therefore appropriate to make a few comments on finite groups.
Given a finite group G, we can construct its algebra C(G); this is the set of

formal linear combinations ( | G |
i 5 1 a i gi with a i P F and G 5 {gi | i 5 1, . . . ,

n 5 | G | }. The coefficients a i 5 a ( gi) are thus functions G ® F, and we can

assume G is a topological group with a i continous, which explains the reason

for the terminology C(G).12

The idea is again, of course, to use the following:

Definition 7. Let G 5 {e, g1, . . . , gn 2 1} be a finite group; we define

P (u) 5 exp 1 i o
n8

j 5 1

uj gj 2 i o
n 2 1

j 5 n8 1 1

l j (u)gj 2 (176)

where n 5 | G | , n8 5 | G | 2 | H | , with H denoting the largest Abelian subgroup

of the commutator G8 5 {g1 g2 g1
2 1g2

2 1 | g1, g2 P G}, and where we have chosen

the numbering such that g0 5 e P H is the neutral element.

This function P is considered as a formal power series, and the coeffi-

cients uj , l (uj ) can in general be noncommutative (they are just formal

quantities). In the case where we have an identification of G with a group
of transformations over some finite field (or division ring or even just principal

ideal domain), such as the Chevalley groups Ak(F), Bk(F), Ck(F), Dk(F) which

12 The natural topology is the discrete one, of course, making all sets open and all functions
continuous.
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generalize the usual Lie algebras of the same names, (Carter, 1977), it would

be natural to let uj , l j belong to this finite field (or division ring) F.

Thus there is an ambiguity in the definition for finite groups, as we
have no a priori candidate for F, the field (or even just ring) to which the

coefficients in the algebra C(G) of G belongs. Choosing an infinite field like

F 5 R or F 5 C would just give us ordinary Lie algebras, whereas an infinite

field such as Q, Q( a 1, . . . , a n), with a i transcendent over Q, would lead to

something slightly different, of use, perhaps in Galois theory, while choosing

a finite field F 5 Zp 5 Z/pZ, p a prime, or F 5 GF( pn) (the so-called Galois
field ) would lead to something very different, namely a finite, discrete set

(i.e., a kind of lattice) as the classical phase space.

Let us furthermore notice that for finite groups we have gn 5 e for any

element g of the group, and so the exponential is well defined, and can in

fact be ª decomposedº as

P (u) 5 1 1 o
n 2 1

j 5 0

p j (u)gj (177)

For the cases su2, su3 and Clifford algebras we have a similar decomposition,

which was very useful for practical calculations. The functions p j (u) are

Taylor series if the field has characteristic zero, and polynomials otherwise.

Before we look at some examples, let us notice that the phase space of

a Galois extension F( a ) can be obtained from that of the original field F in
a simple manner. Let F( a ) have dimension n as a vector space over F, i.e.,

| F( a ) : F| 5 n, then F( a ) 5 F % a F % ? ? ? % a n 2 1F, so any element in the

Galois extension can be written as u 5 u0 1 u1 a 1 ? ? ? 1 un 2 1 a n 2 1. So the

transition F ® F( a ) can be written u j u( a ) 5 u0 1 u1 a 1 ? ? ? 1 un 2 1 a n 2 1.

We have thus proven the following result:

Proposition 13. Let F be any field and let a be transcendent over F; for
any Chevalley algebra g over F we then have

G g(F( a )) 5 G g(F) ^ F( a ) (178)

This result is very similar to the ones for loop algebras or complexifications
we saw earlier.

9.1. Examples of Finite Groups

To develop the formalism I will just give two examples, the permutation
group S3 and the Chevalley group A1(F), F some field (finite or infinite).

For the permutation groups S3, A3 we have the multiplication table as

shown in Table II, with A3 being the subgroup made up by {e, g1, g4}, which

is also the largest Abelian subgroup. From this we get
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Table II. The Multiplication Table of G 5 S3

e g1 g2 g3 g4 g5

e e g1 g2 g3 g4 g5

g1 g1 g4 g3 g5 e g2

g2 g2 g5 e g4 g3 g1

g3 g3 g2 g1 e g5 g4

g4 g4 e g5 g2 g1 g3

g5 g5 g3 g4 g1 g2 e

P (u) 5 exp( 2 i l 1 g1 1 iu2 g2 1 iu3 g3 2 i l 2 g4 1 iu5 g5) (179)

5 1 1 p 0(u)e 1 o
5

i 5 1

p i (u)gi (180)

where

p i (u) 5 o
`

n 5 1

i n

n!
a (n)

i , i 5 0, 1, . . . , 5 (181)

with the coefficients a (n)
i given by the recursion relations

a (n 1 1)
0 5 a (n)

0 a (1)
0 1 a (n)

1 a (1)
4 1 a (n)

2 a (1)
2 1 a (n)

3 a (1)
3 1 a (n)

4 a (1)
1 1 a (n)

5 a (1)
5

a (n 1 1)
1 5 a (n)

0 a (1)
1 1 a (n)

1 a (1)
0 1 a (n)

2 a (1)
5 1 a (n)

3 a (1)
2 1 a (n)

4 a (1)
4 1 a (n)

5 a (1)
3

a (n 1 1)
2 5 a (n)

0 a (1)
2 1 a (n)

1 a (1)
5 1 a (n)

2 a (1)
0 1 a (n)

3 a (1)
1 1 a (n)

4 a (1)
3 1 a (n)

5 a (1)
4

a (n 1 1)
3 5 a (n)

0 a (1)
3 1 a (n)

1 a (1)
2 1 a (n)

2 a (1)
4 1 a (n)

3 a (1)
0 1 a (n)

4 a (1)
5 1 a (n)

5 a (1)
1

a (n 1 1)
4 5 a (n)

0 a (1)
4 1 a (n)

1 a (1)
1 1 a (n)

2 a (1)
3 1 a (n)

3 a (1)
5 1 a (n)

4 a (1)
0 1 a (n)

5 a (1)
2

a (n 1 1)
5 5 a (n)

0 a (1)
5 1 a (n)

1 a (1)
3 1 a (n)

2 a (1)
1 1 a (n)

3 a (1)
4 1 a (n)

4 a (1)
2 1 a (n)

5 a (1)
0

subject to

a (1)
0 5 0, a (1)

i 5 ui for i 5 2, 3, 5, a (1)
1 5 2 l 1, a (1)

4 5 2 l 2

(182)

The dimensionality of the ª phase spaceº (with a field of characteristic zero
as underlying field) is then | S3 | 2 | A3 | 5 6 2 3 5 3. The deformed addition

is rather complicated, namely

1 u2

u3

u5 2 % 1
u82

u83

u85 2 5 1
u2 1 u82 2 u3 l 81 2 l 2u83 2 u5 l 82 2 l 1u85

u3 1 u83 2 l 2u82 2 u2 l 82 2 l 2u85 2 u5 l 81

u5 1 u85 2 l 1u83 2 u2 l 81 2 u3 l 82 2 l 2u82 2 (183)
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For finite-dimensional Lie algebras, the ª undeformed,º or ª zeroth-orderº

antisymmetric two-form v 0 is the coefficient, to the lowest order, of the

Cartan elements, hence (for a general Lie algebra, with root decomposition
as in the text)

v 0(u, v, u8, v8) 5 o
a

(u a v8a 2 u8a v a ) (184)

and this is then the analogue of the Poisson bracket when dim G is even. In

our case of a finite group, the analogous quantity is

v 0(u, u8) 5 u2u85 2 u82u5 1 u3u82 2 u83u2 1 u5u83 1 u5u83

5 )
2 1 u2 u82

2 1 u3 u83

2 1 u5 u85 ) (185)

The Chevalley group of A1(F) over any field (finite or infinite) F is defined

from the relations

[e, f ] 5 h, [h, e] 5 e, [h, f ] 5 2 f (186)

Letting A1(Z) denote the Z-linear span of these elements, we get a Lie algebra;

for any field F we then put

A1(F) [ A1(Z) ^ F (187)

For F 5 R we get sl2(R) 5 so3 5 su2, whereas for F 5 C we get their

respective complexifications. For a finite field F 5 GF( pn) [with GF(p) 5
Zp] we get something completely new, and for F 5 Q we get sl2(Q). Let us
concentrate upon F 5 Zp for now. The phase space cannot simply, as for the

infinite field R, C, be diffeomorphic to {x, y, z P F | x 2 1 y2 1 z 2 5 1}, as

spheres of different radii will contain an unequal number of points in the

discrete case.

The subgroup H is just the diagonal subgroup, and hence is isomorphic

to F3 , where F3 denotes the set of invertible elements in F (for F a field
and not just a division ring, this is F \{0}). Hence, since the group with Lie

algebra A1(F) is PSL2(F) (Carter, 1977)

G A1(F) . PSL2(F)/F3 (188)

For an infinite field such as Q or one of its Galois extensions, this is a

ª manifoldº of dimension 2, as for F 5 R, C, whereas for finite fields it is

a finite set of points. For F 5 GF(pn) for some prime p and some integer

n, we have
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| G | 5
1

(2, pn 2 1)
p2n( p2n 2 1) 2 ( pn 2 1) (189)

where we have used | GF( pn) | 5 pn and where (a, b) denotes the greatest

common divisor of a, b. In the special case n 5 1, in which case GF( p) .
Zp, we thus get a set consisting of 11 points for p 5 2, 34 for p 5 3, and

so on.

I will leave the discussion of finite groups at this point to give a summary
of properties derived so far, and then go onto operator algebras. The further

development of a WWM formalism for finite groups will certainly be of

interest in its own right (applications to pure algebra, Galois theory, and

algebraic geometry spring to mind), but I do not know of any physical

situation which could serve as a motivation.

10. SUMMARY OF PROPERTIES

I will finish this discussion with a summary of the algebraic properties
of the WWM formalism I have been developing. The formalism consists

basically of (1) P and Q, the maps defining the Weyl transformation and its

algebraic properties, and (2) the set C( G ) of functions G ® C, where G is

the classical phase space. The basic correspondence is

AW( j ) [ Tr P ( j )AÃ

AÃ[ # G

P ( j )AW( j ) d m

where the Weyl transform AÃj AW is an isomorphism U(g) ® C( G ). The

operator-valued function P can be viewed as a ª translationº operator and

satisfies (in a local coordinate patch)

P ( j ) P ( j 8) 5 P ( j % j 8)Q( j 3 j 8)

The operations % and 3 were referred to as the deformed addition and

symplectic product, respectively. For an Abelian algebra j % j 8 5 j 1 j 8,
and thus the deformation is a measure of the noncommutativity. Furthermore,

the classical phase space G is a vector space if the algebra is Abelian and a

symplectic manifold if g is semisimple or obtained from a semisimple Lie
algebra by a central extension or by adding an Abelian algebra. Its dimension-

ality is

dim G 5 dim g 2 rank g [ n 2 1

and for n 5 dim g , ` we have
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G g 5 G/H

where G is the smallest connected Lie group having g as its Lie algebra,

while H is similar, but for the Cartan subalgebra of g.

We discovered some very nice properties of ( P , Q, G ), namely

g 5 g1 % g2 Þ P g 5 P g1
P g2

and Qg 5 Qg1
Qg2

g 5 g1 1 g2 Þ P g 5 P g1
P g2

and Qg 5 Qg1
Qg2

qZ if [g1, g2] # Z(g)

h ideal in g Þ P g 5 P g/h P h and Qg 5 Qg/hQh

which allows us to study central extension very easily (for instance, to express

the WWM formalism for an affine Kac±Moody algebra in terms of the WWM

formalism for a loop algebra). Another very important property was

G (g ^ C ` (M )) 5 G (C ` (M ® g)) . C ` (M ® G (g))

which allows us to gauge an algebra and extend out WWM formalism easily,

in particular we can go to the loop algebra M 5 S 1. A similar result holds

for Galois extensions of the base field F ® F( a 1, . . . , a n)

G g(F( a 1, . . . , a n)) . G g ^ F( a 1, . . . , a n)

For F 5 R, a 5 6 i we get a result about complexifications.

A final result relates to morphisms f : g1 ® g2, i.e., structure-preserving

maps between algebras (homomorph isms for Lie algebras; Jordan maps, i.e.,

linear maps preserving the anticommutator, for fermions; super-Lie homomor-

phisms for super-Lie algebras; and so on). Any such morphism induces a

map F : C( G 1) ® C( G 2), where G i is the phase space of gi. Consider the
commutative diagram

U(g1) ®
f

U(g2)

P 1

½
½
½
¯

½
½
½
¯

P 2

C( G 1) ®
F

C( G 2)

Using that P 1 is an isomorphism, we can define

F 5 P 2 + f + P 2 1
1

and then F is well defined and unique.

We can use this to carry topological and algebraic structure from g
through U(g) to C( G ). Suppose, for instance, that g is a normed or seminormed

space, i.e., it is endowed with a map r : g ® R which is sublinear [ r (A 1
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B) # r (A) 1 r (B)] and positive homogeneous [ r ( a A) 5 | a | r (A) with a a

scalar]. Noting that G (R) 5 {0}, i.e., C( G (R)) . R (similar for C, of course),

we have the commutative diagram

g ®
r

R

½
½
½
¯

½
½
½
¯

C( G ) ®
r
Ä

C( G (R)) . R

Thus C( G ) is a normed or seminormed space whenever g is. Hence C( G ) is

a Banach space if and only if g is, and the mapping P becomes an isometry

in this case. Similarly, if g comes equipped with an inner product, i.e., a

sesquilinear map g 3 g ® C, then P induces a sesquilinear form on C( G ),
which then becomes Hilbert if and only if g is a Hilbert space. The diagram is

g ® g 3 g ® C

½
½
½
¯

½
½
½
¯

½
½
½
¯

C( G ) ® C( G ) 3 C( G ) ® C

We should note that semisimple Lie algebras come with a natural nondegener-

ate bilinear form and will thus give pre-Hilbert spaces.

Let us also note that this shows that our construction is in fact independent

of the representation: considering g1, g2 to be two faithful irreducible represen-
tations of a given Lie algebra g, i.e., we have isomorphisms r i: g ® gi #
glni

, this induces an isomorphism g1 ® g2 and hence their two classical phase

spaces will be equivalent. The diagram is

U(g1) Ð ®
r

2
+ r 2 1

1

U(g2)

P 1

½
½
½
½
½
¯

½
½
½
½
½
¯

P 2

½¯ r 1
-

½r 6

U(g)

½
¯ P

C( G )r
Ä
1

- ½ -
½r

Ä
2

,
r 2 + r 1

2 1

C( G 1) Ð ® C( G 2)
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with
,

r 2 + r 1
2 1 5 r Ä 2 + r Ä 1

2 1 (190)

Furthermore , any diffeomorphism a : G 1 ® G 2 induces a map a
*
: C( G 1) ®

C( G 2), which then leads to a map a Ä : U(g1) ® U(g2), which allows us to

study the group of maps a of one manifold onto another in a new, more

algebraic way.

We have the following result:

Propositon 14. If g is a normed algebra, then so is C( G ); if g has an

inner product, then so does C( G ). Thus if g is Hilbert or Banach, then so

is C( G ).

All of the above hold for a very large class of algebraic structures as

we have seen.

11. C*-ALGEBRAS

It would be interesting to go on to an even larger class of algebras such

as C*-algebras. The general idea is to construct an isomorphism

! ® C( G )

between a C*-algebra and an algebra of functions on some manifold G . For

Abelian algebras such an isomorphism is already known [the Gel’ fand theo-

rem; see, e.g., Bratteli and Robinson (1979) and Murphy (1990)]

! . C0(X )

where C0 denotes the functions vanishing at infinity and X is some locally

compact Hausdorff space (the spectrum or maximal ideal space of A)

which is compact if and only if ! contains the identity (Bratteli and

Robinson, 1979; Murphy, 1990). Our WWM formalism would then provide

us with a non-Abelian Gel’ fand theorem. One should note that the basic
ingredient in Gel’ fand’ s theorem is the concept of a character on an

Abelian C*-algebra, i.e., a linear map x : ! ® C such that x (AB) 5
x (A) x (B); X is the space of such maps, and is hence a subset of the dual

!* of !. The WWM formalism gives a natural generalization of this:

x (A) 5 AW; the product rule then reads x (AB) 5 x (A) * x (B) and we

could refer to the Weyl transform as a generalized character. The major
problem is the construction of G (the Abelian case uses ! , !** and

X , !*, hence ! can be viewed as a function on X; it then relies on

the Stone±Weierstrass theorem to prove the isomorphism, and this is

difficult to generalize to non-Abelian algebras).



746 Antonsen

Any non-Abelian C*-algebra is isomorphic to a subalgebra of the

algebra @(*) of bounded operators on some separable Hilbert space *.

The method developed in the previous sections can thus be seen as a
special case, namely the case of finite-dimensional C*-algebras, and we

now want to go further. A particular important subalgebra @ is _ 5
@0(*) of compact operators, i.e., the operators for which the image of

the unit ball {x P * | |x|2 # 1} is compact. The elements of this

subalgebra can be approximated by finite matrices; in fact (Murphy, 1990;

Wegge±Olsen, 1993)

_ 5 lim
®

gln(C)

where the lim ® is understood as the inductive limit, hence _ is the

completion (in norm-topology) of gl ` (C). This suggest that the case of

compact operators is the next simplest case to treat.13 And in fact we

can use the very definition of inductive limit to construct directly the

corresponding classical phase space. Recall that the inductive limit requires
a directed system {Ai , F ij }i P (, i.e., a family of objects A i indexed by an

upward filtering index set ( (i.e., a set ( such that whenever i, j P (,

a k P ( exists such that k . i and k . j ) and with a morphism F ij :

Aj ® Ai whenever j . i. The inductive limit A ` is then the object ø (

Ai with morphisms F i: Ai ® A ` such that

Aj ®
F j

A `

F i

F ij

½
½
½
¯

-
½

½
½

Aj

commutes.
Denoting by P n the WWM map from Mn 5 gln(C) into C( G n),

where G n is the classical phase space corresponding to Mn, we get the

following diagram:

13 A C*-algebra which can be obtained as the inductive limit of matrix algebras is known as
an AF-algebra, an ª approximately finite dimensionalº algebra. Thus our methods can be
generalized to these.
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Mn Ð ®
F

mn

Mm

P n

½
½
½
½
½
¯

½
½
½
½
½
¯

P m

½¯F n

-½ F m

M `

½
¯ P `

C( G ` )

½¯F
Ä

n
-

½ F
Ä

m

F
Ä

mn

C( G n) Ð ® C( G m)

Expressed in formulas, we have

C( G (_)) 5 C( G ` )) 5 lim
®

C( G n) (191)

The map P ` is given by

P ` (A) [ lim
n ® `

P n(Pn APn) (192)

where P n is, as in the diagram, the Weyl map for gln and where Pn is the

projection _ ® gln; these constitute an approximate unit for _ (i.e., Pn A ®
A " A P _) and the above construction is then well defined.

If we could extend our scheme to @(*), then we would be able to treat

any C*-algebra; thus our next problem is to find out how to go from _ 5
@0 to @. One way is to write down an exact sequence14

0 ® _ ® @ ® @/_ ® 0

where @/_ is known as the Calkin algebra; this shows that @ is an extension
of the algebra _ by the Calkin algebra. There is another way of obtaining @
from _, namely by the use of what is known as the multiplier algebra }(A) of

a C*-algebra; this is defined as the largest utilization of A,15 and can be con-

structed as follows. Suppose A acts nondegenerately on some Hilbert space *1

(this is always possible to arrange); then A # @(*1), and we put

}(A) 5 {x P @(*1) | xA # A Ù Ax # A} (193)

14 A sequence A ® a
B ® b

C is said to be exact if the kernel of b is the image of a , i.e., going

twice ( b + a ) gives zero, and this is the only way of getting zero. Hence 0 ® A ® a B is

exact if and only if a is injective, and A ®
a

B ® 0 is exact if and only if a is surjective.
This notion is easily generalized to longer sequences; we simply demand the kernel of one
map to be equal to the image of the previous one.

15 I.e. the largest algebra constructed from A containing A itself and a unit element 1.
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Equivalently, }(A) is the completion in the topology induced by the semi-

norms x j | xa | and x j | ax | , where x P @(*1) and a P A (this topology

is known as the strict topology). The basic vector is

}(_) 5 @ (194)

Thus if we can find a way of extending the WWM formalism for a given

C*-algebra A consisting of compact operators (A # _) to its multiplier

algebra }(A), then we will have extended our WWM formalism to all C*-

algebras. Another interesting possibility, closely related to this, is the study
of the WWM formalism for arbitrary extensions of A. This would also be

an interesting exercise in the case of Lie algebras, as would the study of

InoÈ nuÈ ±Wigner contractions.

Before doing this, let us look at the simplest (smallest) unitization A+

of A; when A is not itself unital, then A+ . A 1 1C, i.e., x 5 a 1 l , x P
A+, a P A, l P C with a natural product (a 1 l )(b 1 m ) 5 ab 1 l b 1 m a
1 l m . Any morphism f : A ® B between C*-algebras induces a morphism

f +: A+ ® B+ given by

f +(a 1 l ) [ f (a) 1 l

Letting B 5 C( G ) and f 5 P , we get

C( G +) 5 C( G (A+)) . C( G ) 3 C (195)

Any function in C( G +) is thus a pair ( f (x), l ), where f : A ® C and l P C.

This implies that G (A+) [ G + is constructed by the adjoining of a point to

G (A) 5 G ; the scalar l is then the value assigned to f at this extra point, i.e., we

can consider G + to be the one-point compactification of G ; in standard symbols

G + 5 a G (196)

For C*-algebras the adjoining of a unit does not lead to the old phase space

plus some isolated point, as we always have sequences en ® 1, en P A
(approximate units); so the new phase space, which is again the old one with

some point added, must be just as connected as the original one, thus leading
to a compactification as argued above. For Lie algebras we do not have any

sequences corresponding to approximate units, and hence get isolated points.

Now, the Gel’ fand theory for Abelian C*-algebras gives exactly this

relationship, too, which seems to imply that our scheme is indeed in some

sense the noncommutative version of Gel’ fand’ s. Similarly, we can see that

any unitization of A leads to a compactification of G :

unitization of A ® compactification of G

Let A1, A2 be two different unitizations of A; then A1 # A2 implies G 1 # G 2,

where G i 5 G (Ai). Now, the smallest unitization should thus correspond to
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the smallest compactification (which we also saw that it did) and the largest

unitization, the multiplier algebra }(A), to the largest compactification b G ,

the Stone±CÏ ech compactification. Thus

G }(A) 5 b G A (197)

and the corona algebra }(A)/A becomes isomorphic to C( b G )/C( G ) .
C( b G \ G ). We thus have the following result:

Proposition 15. Let A be a C*-algebra and let A+ 5 A 1 1C denote the

smallest possible unitization and }(A) the multiplier algebra. Suppose the
classical phase space of A is G ; then

G (A+) . a G (one-point compactification)

G (}(A)) . b G (Stone±CÏ ech compactification)

We are now through; }(_) 5 @, and, as we mentioned, any non-

Abelian C*-algebra sits as a subalgebra inside @(*) for some Hilbert space *.

With the relationship between unitizations and compactification clarified,

we can go on to extensions. We say that B is an extension of A by C if

0 ® A ®
a

B ®
b

C ® 0

is exact.

Now any morphism 0 ® A ® B induces a unique morphism B ® }(A);

in fact we have the following commutative diagram:

0 ® A ®
a

B ®
b

C ® 0

½ ½
½ ½
½ ½
½ ½
½ ½
½ ½

½
½
½
½
½
¯

s

½
½
½
½
½
¯

t

0 ® A ® }(A) ® }(A)/A ® 0

The morphism t is known as the Busby invariant; it characterizes the extension
and is unique (Wegge-Olsen, 1993). We suppose that we know the classical

phase spaces of A and C and we want to find it for the larger algebra B #
A % C. It turns out (Wegge-Olsen, 1993) that B can be constructed from t
and A in the following way:

B . {a % c P }(A) % C | p (a) 5 t (c)} (198)

where p is the canonical quotient map }(A) ® }(A)/A. We say that B is

the pullback of }(A)/A along p and t . This implies that C( G B) is a kind of

ª diagonalº subspace of C( b G A) % C( G C), namely:
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Proposition 16. If A, B, C are C*-algebras and if B is an extension of

A by C, then

C( G B) . { f P g P C( b G A) % C( G C) | p Ä ( f ) 5 t Ä ( g) P C( b G A\ G A)} (199)

In this way we are able to construct the classical phase space of an

extension from its Busby invariant t and the classical phase spaces of the

other algebras. We see, e.g., that C( G A) has codimension one when C is an

Abelian C*-algebra.

Admittedly, the WWM formalism put forward in this paper is rather
formal as far as C*-algebras are concerned; we were only able to show how

in principle one could construct classical phase spaces, and we saw that G ` ,

the classical phase space of the algebra of compact operators, could be

expressed as a direct limit of G n 5 G ( gln). We have not given explicit

constructions for other C*-algebras, though. The next natural step will be to

study specific C*-algebras, e.g., the irrational rotation algebras A u , which
correspond closely to the Heisenberg algebra, the Toeplitz algebra (generated

by the shift operator), which can be seen as a kind of limit of sol or sul , its

generalization the so-called Cuntz algebras, and so on. This will be sketched

in the next section.

12. EXAMPLES OF C*-ALGEBRAS

We will begin with algebras generated by shift operators. First of all,

we will consider the Hilbert space l2(Z), i.e., the space of all square-summable

sequences of complex numbers with the set of integers as their index set.

An important operator on this space is the bilateral shift

S | n & 5 | n 1 1 & (200)

where { | n & }, n P Z, denotes an orthonormal basis. The adjoint operator S *

similarly satisfies

S * | n & 5 | n 2 1 & (201)

and we see that S is unitary. We can form the C*-algebra A 5 C*(S ) generated

by S (and thus also including S*). Clearly, A is Abelian and hence isomorphic

to C[[X, XÅ ]], i.e., G 5 C. A much more interesting case comes about when

we consider not the integers, but only the natural numbers N as index set.

We then get the unilateral shift, which is only an isometry: S*S 5 1, but

SS* Þ 1; in fact, SS* 5 (1 2 d n1) 5 1 2 P1, where P1 is the projection
unto | 1 & , i.e.,

[S, S*] 5 P1 (202)

The corresponding C*-algebra is known as the Toeplitz algebra and will be
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denoted by 7. This algebra is one of the best studied and important C*-

algebras. It can also be seen as an extension of _, the compact operators,

by C(S 1), the Abelian C*-algebra of continuous functions on the circle. Any
element in 7 can be written as x 5 S `

n,m 5 0 xnm S n(S*)m 5 S n,m xnm Tnm, where

Tnm 5 S nS *m. The commutator of these generators is easily seen to be

[Tnm, Tn8m8] 5 u (n8 2 m)Tn 1 n8 2 m,m8 1 u (m 2 n8)Tn,m 2 n8 1 m8

2 u (n 2 m8)Tn 1 n8 2 m8,m 2 u (m8 2 n)Tn8,m 1 m8 2 n

1 d n8mTnm8 2 d nm8Tn8m (203)

We note that {Tn0}, {T0n} form two (isomorphic) Abelian subalgebras. Any

element of the classical phase space will then be of the form

j (x, y) 5 o
nm

j nm x ny m (204)

with

( j mn)
² 5 j nm (205)

Hence G 7 consists of analytical functions S 1 3 S 1 ® C. The ª translation
operatorº P has the form

P 7( j ) 5 exp F i o
`

n 5 0
o
`

m 5 1

j nmTnm 1 i o
`

m 5 0

l m( j )Tm0 G (206)

The only a priori restriction on the coefficients j nm is that j P l1(N0 3 N),

the set of absolute summable series indexed by N0 3 N with N0 5 {0, 1, 2,

3, . . .}. This can also be interpreted as functions in H 1(S 1 3 S 1), the Hardy
space of absolute integrable functions f (x, y) such that f vanishes whenever
x, y , 0, and we finally end up with

G 7A 5 H 1(S 1 3 S 1)/H 1(S 1) . { f P H 1(S 1 3 S 1) | f | diag 5 0}

[ HÄ 1(S 1 3 S 1) (207)

The Toeplitz algebra can also be defined in another way, namely as the C*-

algebra generated by operators of the form x j T f x 5 P( f x), where f P C(S 1)

and P is the projection L2(S 1) ® H 2(S 1), so it is not surprising that the Hardy

spaces H p turn up. We get H 1 and not H 2, as we only have a norm and not a

sesquilinear form on our operator algebra (if we could define a ª Hilbert±

Schmidtº subalgebra, then it would be isomorphic to HÄ 2), and we get the space
S 1 3 S 1 and not just S 1 because we have to take S and S* as independent quanti-

ties, thus giving rise to an underlying two-dimensional space.

The Toeplitz algebra is not Abelian, so it is not surprising that we get

an infinite-dimensional phase space, which we can then represent as a space
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of functions. The elements in the Toeplitz algebra get represented by nonlinear

functionals in this manner. The next obvious step is the so-called Cuntz
algebra 2n spanned by n isometries Si subject to

o
n

i 5 1
Si S*i 5 1 (208)

i.e., their range projections Si S*i cover the entire space. By analogy with the
Toeplitz case we get

G 2n 5 HÄ 1(S 1 3 S 1 3 ? ? ? 3 S 1)p
2n

The next important case is A u , the rotation algebras, where u P R; these

are generated by two unitaries u, v subject to

uv 5 ei2 p u vu (210)

Let Tnm 5 unvm; we quickly arrive at the algebra

[Tmn, Tm8n8] 5 ( d nm8e
2 in2 p u 2 d n8me 2 in82 p u )Tm 1 m8,n 1 n8

1 u (n 2 m8)e 2 im82 p u Tm,n 1 n8 2 m8 1 u (m8 2 n)e 2 in2 p u Tm 1 m8 2 n,n8

2 u (n8 2 m)e 2 im2 p u Tm8,n 1 n8 2 m 2 u (m 2 n8)e 2 in82 p u Tm 1 m8 2 n8,n

(211)

Here u (n) is the Heaviside step function. We see that when u is a rational

number, we can choose n, m, n8, m8 in a nontrivial way and still get a

vanishing commutator (e.g., n 5 m8, n8 5 m, and n 2 m an even number),

whereas for u irrational this is not possible. Thus for u P Q we can have

either a larger maximal Abelian subalgebra or we can embed l1(Z) in more
than two (inequivalent) ways. When the angle u is irrational we get

G A u 5 l1(Z2)/l1(Z) 5 {( j nm P l1(Z2) | xnn 5 0} [ lÄ1(Z2) (212)

represented as a space of sequences, or equivalently as a space of functions

G A u 5 LÄ 1(S 1 3 S 1) [ { f P L1(S 1 3 S 1) | f | diag 5 0} (213)

Further examples can of course be thought of, but we will stop for now. The
spaces we found are listed in Table III. The reason why we always had G
of the form ^( G 0) where ^ denotes some class of functions with G 0 compact

(indeed of the form S 1 3 S 1 3 ? ? ? 3 S 1) was that we always had a finite

number of generators.



Wigner± Weyl± Moyal Formalism on Algebraic Structures 753

Table III. The Classical Phase Spaces G for a Number of C*-Algebras

Space C*-algebra

C[[X, XÅ ]] Bilateral shift

HÄ 1(S 1 3 S 1) Unilateral shift/Toeplitz algebra

HÄ (S 1 3 ? ? ? 3 S 1) Cuntz algebra 2np
2n

LÄ 2(S 1 3 S 1) Irrational rotation algebra

13. OUTLOOK: TOWARD A GENERAL DEQUANTIZATION
AND QUANTIZATION PROCEDURE

The method we have been developing in the previous sections constitutes

a general ª dequantizationº mechanism: to a given quantum phase space we

associate a classical phase space and we identify the quantum operators with

functions on this space. So far this formalism has been developed for Lie,

super-Lie, and quantum-Lie algebras as well as C*-algebras.

If we want to include noncontinuous functions, we would have to go
to von Neumann algebras instead, and this would be the natural next step.

Let me just sketch what one should probably do. A weight on a von Neumann

algebra ! (Sunder, 1987) is a linear map v : !+ ® R+ ø { ` } 5 [0, ` ]; we

call it a trace if v (A* A) 5 v (AA*).16 Any von Neumann algebra possesses

a trace which is semifinite (i.e., the subset of ! given by v ( | A | ) , ` is
dense in some specific topology). This should be the mapping that replaces

the usual trace, and we could define

!p( v ) [ {A P ! | v ( | A | p) , ` } (214)

We then want a map P such that

P : !p( v ) ® Lp( G , d m v )

is an isomorphism. Continuing as before, we would write

AW( j ) 5 v ( P ( j )A)

A 5 # P ( j )AW( j ) d m v

assuming that we can still use the same P ( j ) in both directions. The mapping

A % AW is then also denoted by P as before.

16 We mentioned the possibility of this more abstract definition already in the section on Lie
algebras, but this is the first time we really do need it. For finite-dimensional algebras any
trace as defined above is just the usual matrix trace (up to a constant). A further generalization,
suited for K-theoretic analysis, is to replace the trace by an arbitrary cyclic cocycle.
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The elements of ! which do not belong to any of the subspaces !p

would then, by extension of P , be mapped into measurable, but not absolutely

integrable functions (i.e., in none of the Lp-spaces), i.e.,

P : ! ® M( G , d m v )

where M( G , d m ) denotes the set of measurable functions on G . We can extend
P to all of ! by using its semifiniteness, and assuming P to be continuous

in some given topology. We know, formally at least, that we can extend our

WWM formalism to von Neumann algebras as well, as these are, by definition,

subalgebras of @(H ) for some Hilbert space H, i.e., they lie inside some C*-

algebra. Similarly, given any C*-algebra A, we can use the GNS construction

to obtain an isomorphism p of A onto a subalgebra of @(H ) for some (in
general huge) Hilbert space H; the algebra B 5 p (A)9 will then be a von

Neumann algebra containing A, where A9 denotes the double commutant of

an algebra [i.e., set of all elements which commutes with any element of

@(H ) commuting with all of A (Sunder, 1987; Murphy, 1990)].

As far as operator algebras are concerned, one might also consider

ª regularizingº the trace, by replacing it by some cyclic cocycle cohomologous
to it.

Another important development would be the inverse of what we have

been doing so far, namely constructing a general quantization mechanism,

which, given a symplectic manifold, deforms it and yields a non-Abelian

algebra of functions which is isomorphic to an operator algebra. Symbolically:

{ ? , ? }PB ® [ ? , ? ]M ® [ ? , ? ]

This would allow us to quantize arbitrary classical theories. Some progress

has been made over the past decades in this direction; it is, for instance,

known that any symplectic manifold admits a twisted product (Flato and

Sternheimer, 1980). In this case we should probably make much more use

of the symmetries of the classical phase space, finding some way, this restricts

the corresponding quantum phase spaces algebraic structure.
An interesting application of this formalism would be to index theorems;

as the WWM formalism establishes a link between operators and functions,

and thus between algebra, geometry, and topology, it ought to be useful in

this context. It also opens up the possibility of characterizing the topology

of certain manifolds by purely algebraic means, and, on the other hand, to

give geometrical/topological interpretations of otherwise purely algebraic
concepts. What could turn out to be particularly useful is the various possible

choices of phase spaces for the algebras so(r, s), depending on whether one

looks upon them as Lie or Clifford algebras, or, indeed, as deformed algebras,

establishing connections between ordinary manifolds, Grassmann spaces,
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and braided spaces, respectively. Especially for harmonic and/or functional

analysis on these spaces, this relationship could very well prove very powerful.

As a final comment, one should notice that WWM quantization might
help resolve problems of operator ordering (each WWM map defined its

own unique operator ordering prescription) and renormalization. The usual

problems with renormalizability stems from the multiplication of distribu-

tions, and this is ill defined for ordinary products, but might be quite reason-

able for twisted products, or by ª regularizingº by replacing the trace by a

cyclic cocycle cohomologous to it.

14. CONCLUSION

We have seen how we can generalize the Wigner±Weyl±Moyal formal-

ism first to the case where the quantum phase space is an arbitrary Lie algebra
of finite or infinite dimension. We also saw how to relate the WWM formalism

for a loop algebra gloop or a Kac-Moody algebra gÃk based on some ordinary,

finite-dimensional, semisimple Lie algebra g to the WWM formalism of g
itself. We were furthermore able to treat fermionic degrees of freedom, i.e.,

anticommutators, and hence to include super-Lie algebras as well. Next, it
was indicated how deformed Lie algebras, quantum Lie algebras, could be

treated, too, and how the WWM formalism of a q-deformed Lie algebra gq

could be related to that of the original algebra. Some comments were also

made on intermediate statistics. As our standard example we took su2, and

we saw how the corresponding classical phase space turned out to be S 2.

Naively, the classical phase space corresponding to a Lie algebra of rank l
and dimension n is Rn 2 l, but we realized that the noncommutativity of the

algebra resulted in a deformation of this vector space, so in the end, the

classical phase space became only locally isomorphic to Rn 2 l, i.e., became

an (n 2 l)-dimensional real manifold. The curvature of this manifold was a

measure of the noncommutativity of the Lie algebra. The algebra structure

induced an addition and a symplectic product on the classical phase space,
which were deformations of the corresponding operations in the flat space.

We should emphasize that although we have only used Lie algebras over the

field of complex numbers, essentially the same analysis should be possible

to carry out with any basefield, e.g., finite fields, thus giving us Chevalley
algebras, or even just division rings (the quaternions, for instance). Some

simplifications do occur in our case, though, as C is algebraically closed.
Carried over into the realm of C*-algebras, the WWM formalism pro-

vides us with a kind of noncommutative Gelfand theorem, which differs from

the usual Gelfand theorem in the Abelian case, though. We also speculated

about how to extend the scheme to include von Neumann algebras. For
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reasons of space, we did not discuss the properties of the corresponding

Wigner functions; this has to be left for future research.
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